
2023 ODVA Industry Conference 1 ©2023 ODVA, Inc.

Automatic CIP Security via Pull Policy

Joakim Wiberg
Head of Technology

HMS Networks

David Smith
Cybersecurity Architect

Schneider Electric

Jack Visoky
Principal Engineer and Security Architect

Rockwell Automation

Presented at the ODVA

2023 Industry Conference & 22nd Annual Meeting
October 18, 2023
El Vendrell, Spain

Abstract

The CIP Security Pull Model Profile provides a major benefit of allowing a device to automatically discover
a certificate enrolment server and request a certificate for secure communication. However, secure
communication with CIP Security requires additional configuration beyond just the certificate. Additional
value could be realized by defining a mechanism for a device to request not just a certificate, but also the
associated configuration for enabling CIP Security. This configuration includes things like allowed cipher
suites, trust anchors, certificate revocation lists, etc. One benefit of this ability would be the seamless
application of device replacement, where a replaced device could automatically discover a security
configuration server and request all of the configuration needed for CIP Security. Furthermore, this would
also enable devices to work in network architectures where a configuration tool could not reach the
device, like a NAT with the device on the private network and the configuration tool on the public network.
This paper will explore use cases and requirements for a feature such as this, as well as potential
technology choices.

Keywords

IIoT, Cybersecurity, CIP Security, Policy Configuration, Networking, Automatic Configuration

Introduction

CIP Security provides important information assurance properties that are needed to mitigate threats in
many industrial applications using EtherNet/IP. However, prior to using CIP Security there must be a
configuration step that takes place. The CIP specification has defined a common way in which this
configuration is delivered to a device via CIP objects and services. This works well in many cases,

2023 ODVA Industry Conference 2 ©2023 ODVA, Inc.

although there are some limitations. This is explored further in the use cases section, but briefly there are
at least three situations where delivering CIP Security configuration via CIP objects and services presents
a limitation:

• Network architectures where routing is not allowed like Network Address Translation (NAT)
• Software that only has CIP client capabilities and no server functionality
• Fully automatic device replacement with CIP Security enabled

In order to serve these use cases (and potentially others) a new mechanism for delivering CIP Security
configuration is discussed here. Requirements for this mechanism are discussed in this paper, but
essentially it needs to be able to serve CIP Security configuration via a document that is requested by a
client. In this context, the term “document” refers to a packaged data format that exists in one coherent
file and can be transmitted to the consumer independent of the transport mechanism. Of course, this
scheme must provide authenticity assurances and be resistant to cyber-attacks.

Besides discussing use cases and requirements, this paper will also investigate potential technologies to
realize this scheme for delivery of CIP Security configuration via a document format. A few technologies
are weighed against how well they meet the requirements, and a recommendation for a technology to use
is given, as well as recommended future work.

Use Cases

A consistent security configuration is required for devices to operate in a secure manner. Due to the need
for clients and servers to have the same configuration, a mechanism for the clients and servers to
request, or “pull” security configuration is useful to distribute this security configuration across multiple use
cases that may even overlap. The existing Push Model is useful in that a centralized tool can configure all
the devices in the network, but it fails to accommodate some important use cases, which are explored
below. Note that the Push Model as currently defined can provide a certificate as well as the necessary
CIP Security configuration via CIP services and attributes. However, the current Pull Model only provides
a certificate; therefore, this document format is necessary to provide parity of Push and Pull models.

Deliver security config to private networks, e.g. through a NAT
In this use case, the PLC opens a client connection (not a CIP connection, rather some TCP or similar
session) to the OT Configuration server and pulls its security configuration periodically. The routes
through the router and the firewall can be simply configured and monitored.

2023 ODVA Industry Conference 3 ©2023 ODVA, Inc.

Ethernet LAN Diagram

Router-Firewall

172.16.0.1

10.20.14.10 10.20.14.111

10.22.8.11 10.22.8.12 10.22.8.13

Workstation Operator HMI Historian

SCADA

10.22.0.1

Motor
IOPLC

OT
Config

10.20.0.1

HMI
Figure 1

Network topologies that enforce network segregation through routers with Network Address Translation
(NAT) make it difficult for Push Model connections to be made through the router. In Figure 1, any
devices that connect to the DMZ will have a translated IP address of 10.20.14.1. The DMZ will not be
allowed to make a connection through the router to the OT Network unless pre-configured routes are
used. This requires substantial configuration and continuous maintenance as devices in the segregated
network are added and removed. Preconfigured routes also weaken the security posture of the
segregated network giving attackers a well-defined path to gain access to the network.

Deliver security config to “client-only” software

SCADA, HMI, Engineering, Configuration and Management tools, are often client only functionality.
Unlike OT devices such as PLCs and IO, they have no ability to accommodate a Push Model for
configuration. However, there is still a need for coherent security configuration for clients to be aligned
with servers in the system. Much like the first use case where a client connection can be easily configured
through routers and firewalls, the Pull Model provides simpler system configuration while ensuring a high
level of security posture.

2023 ODVA Industry Conference 4 ©2023 ODVA, Inc.

Fully automatic device replacement

In one last use case regarding device replacement, allowing a device being replaced to retrieve its own
configuration is a straightforward way to facilitate device replacement. The specifics of how a device may
come to be trusted on the network are outside the scope of this paper, but a simplified configuration to
enable that process can be accomplished with a Pull Model. As an example, an electric motor driver is
replaced. The motor driver searches for a well-known address using mDNS (multicast DNS packets to
discover a service) or DNS-SD (a specific protocol for discovering network services) in order to find the
OT Configuration service address. After the address is resolved, the motor driver can then pull its initial
security configuration from the OT Configuration service. This configuration may be enough to allow the
full bootstrapping of trust of the new motor driver without manual intervention.

Requirements

This section outlines some of the crucial requirements ensuring the effective delivery of a robust security
configuration. Here, a diverse set of requirements is outlined that encompass various aspects, including
technical specifications and practical use case considerations. By addressing these crucial prerequisites,
a solid foundation can be established for implementing a reliable and tailored security configuration.

Document format

A comprehensive document format is essential for managing and communicating critical security
parameters from the configuration server. This document format enables the inclusion of crucial
information such as allowed cipher suites, trust anchors, and certificate revocation list together with the
communication certificate.

Integrity and consistency are vital aspects when it comes to delivering the security related configuration.
Bundling all the configuration options in one single document maintains the reliability and trustworthiness
of the information. Both these attributes ensure that the content of the document remains accurate and
unaltered. This allows for all of the configuration to be applied atomically, as it can be parsed and
interpreted by the device and then applied at once. Furthermore, the document format abstracts the
transport of configuration from the configuration itself, meaning that this could be delivered over other
transports (e.g. MQTT) if that was necessary or beneficial in some use cases.

A well-defined document format containing allowed cipher suites, trust anchors, and certificate revocation
lists, delivered along with the device’s identity certificate establishes a robust security configuration.

Authenticity

The authenticity of a document confirms its genuine origin and ensures that it has not been tampered
with. It ensures that the document can be trusted as an accurate representation of its contents, i.e. the full
security configuration delivered from the server.

The validation of the authenticity of a document is crucial and something that can be done using different
mechanisms. In all cases there needs to be some provisioning done before the validation of the
authenticity takes place. One common approach is the use of digital signatures. Digital signatures utilize
cryptographic techniques to bind a unique identifier to the document. By verifying the digital signature, the
device can authenticate the document and trust that it came from the expected sender and was not
modified by an unauthorized party. However, in this case the device would need to be pre-provisioned
with a key from the server generating the document.

In all cases the pre-provisioning requires that some trust provisioning with the device takes place before
the authenticity of the document can be verified. Once the pre-provisioning of trust occurs this could allow
for a fully automatic and seamless device replacement. To establish the initial trust, the process of a trust

2023 ODVA Industry Conference 5 ©2023 ODVA, Inc.

on first use (TOFU) approach would be required. Upon the first attempt to connect, to a configuration
server the device is initially provisioned with cryptographic keys. These keys then facilitate validation of
the authenticity of the signed configuration document, providing the replaced device with security
configuration.

Confidentiality

In general, the security configuration isn’t secret and doesn’t need to be protected by encryption.
However, the pre-shared keys are one attribute within the security configuration that needs to be
protected and kept secret. Installations that use pre-shared keys are normally smaller installations with a
limited number of nodes. In those cases, it’s less likely that the Pull Model will be used, as a centralized
configuration server may not be present.

If pre-shared keys are to be delivered via the Pull Model, at a minimum they need to be encrypted in
some way. Alternatively, the whole document could be encrypted. This would protect the pre-shared keys
in the case when they are used. Since only the pre-shared keys need to be protected and pre-shared
keys are not the normal use-case, it is an unnecessary burden to always encrypt the whole document.

There are however merits to allow for encryption of the whole document if additional configuration
attributes that require protection, are added in the future. For this reason, it’s preferable to make it an
option for the end-user to protect the whole document with encryption.

Versioning

End nodes need to be aware of the specific version of the policy they are applying in order to ensure
proper functionality and compatibility. This is crucial when implementing updates or modifications to
policies while maintaining backward compatibility. There are two primary methods to accomplish version
tracking; using a counter or using timestamps.

The counter-based approach involves assigning a numerical value to each new version of the policy
document. Every time a new version is created, the counter increments by one. End nodes can then
reference this counter value to determine the policy version they should apply.

Alternatively, timestamps can be employed to track policy versions. Each time a new version of the policy
document is created, a timestamp indicating the date and time of the update is assigned. End nodes can
compare their own timestamp with the latest timestamp in the document to determine which version to
apply. This method provides more value, allowing for precise version identification when the configuration
change in the document was done. However, it does require that consumers of the policy document have
time set in a synchronous manner with the configuration server.

It's worth noting that choosing the counter-based approach initially does not preclude the utilization of
timestamps in the future. Timestamps can be introduced for additional functionalities as needed in the
future. For example, timestamps can be used to track the last modification time of the document or for
auditing purposes, while the counter remains dedicated to policy versioning.

Automatic discovery

In the CIP Security Pull Model Profile, the initial setup involves locating an Enrollment over Secure
Transport (EST) server through mDNS/DNS-SD and subsequently requesting identity and trust
information using the EST protocol. The certificate and trust provisioning process in the Pull Model
comprises two primary steps. Firstly, the EST server is discovered using mDNS/DNS-SD. Secondly,
certificates are retrieved from the EST server.

2023 ODVA Industry Conference 6 ©2023 ODVA, Inc.

Likewise, the new Pull Policy approach requires the discovery of a server to access the policy document.
Since mDNS/DNS-SD is already established in the CIP Security specification, it is preferable to continue
utilizing these mechanisms. By reusing the same mechanisms and protocols, unnecessary burden on end
nodes is eliminated. Generally, this requirement is meant to ensure that any technology chosen would not
prevent the continued use of mDNS/DNS-SD.

Configuring retry

During the initial discovery process of the Pull Policy server, the end node will continuously attempt to find
the server and request the policy document. However, it is crucial to avoid overwhelming the network with
excessive traffic when the server is offline or temporarily unable to provide the policy document.

To address this issue, it is necessary to implement a mechanism that reduces network traffic generated
by the end node's attempts to discover the server or obtain a policy document. This mechanism should
include a sensible default value, which can potentially be modified by end users through configuration
options. Additionally, incorporating a back-off algorithm could be a beneficial consideration.

Trigger a reconfiguration

Over time, it is expected that the configuration policy will undergo changes, necessitating the deployment
of a new policy document on the end-nodes. To ensure proper functioning, this new policy deployment
must be synchronized across the entire system or, at the very least, among all interconnected end-nodes.

Given the requirement for synchronization among the affected end-nodes, a triggering mechanism
becomes necessary for initiating this reconfiguration. In many cases, it is advantageous for the
reconfiguration trigger to be executed through a CIP command. This approach allows for the
synchronization of reconfiguration with the control operation of the system, including the secure closure
and re-establishment of IO connections. However, there are also advantages to triggering the
reconfiguration through the policy server especially if it could be done through a non-CIP mechanism, as
the policy server would not need to know about CIP at all.

Alternatively, it is possible for each end-node configured via the policy document to periodically check for
policy updates. In many cases this will provide an acceptable level of synchronization, as changes across
the system need not be synchronized atomically. Many security changes will result in connections being
dropped and re-made, which will provide some amount of downtime. If this downtime extends by a few
seconds that is likely acceptable, as these types of changes are likely not being applied during
production.

Ease of use with CIP Configuration

Even if a technology was able to easily meet all of the aforementioned requirements, it would be useless
if it could not be used to encode CIP configuration. This effort is focused on deploying CIP Security
configuration as document-based policy in a secure manner, so it is very important that the document is
able to encode CIP configuration. Some technologies may be optimized for other types of information and
therefore are not able to easily encode CIP configuration, in which case they would not be suitable.
Configuring CIP Security involves several things, from simple setting of Boolean attributes to transmission
of certificates for use as trust anchors. Although not strictly necessary for the minimum configuration, it is
also helpful to be able to encode a request for the execution of a certain CIP service, as these might be
necessary for the policy to be fully realized (for example, the policy may include running the
Object_Cleanup service of the CIP Security object to clean up any unused certificates after a new policy
is applied).

2023 ODVA Industry Conference 7 ©2023 ODVA, Inc.

Suitable for embedded computing environments

Given that many of the CIP stacks execute on an embedded software platform, any technology chosen
for pull policy must be able to execute within an embedded environment. Although this might not
completely disqualify some possible solutions, it will likely make some less suitable. Technologies that
rely on large files or require software agents to run would be less suitable for use in an embedded
environment.

Human Readable

It is ideal to choose a technology that allows for the policy document to be human readable. This would
provide a quick interpretation of a given policy document, and possibly even allow for manual editing in a
simple system. Auditing would also be easier, as a human or machine could interpret the document
without any additional decoding needed.

Technology

There are several possibilities for the technology used for the configuration policy formatting. Given that
the configuration policy is to be encoded and delivered in a document, the transport mechanism is not
very important; a document can be transmitted over various communication protocols. However, the
technology used to format this document is important to define. Various technologies offer trade-offs. A
discussion of a few possibilities follows.

AutomationML

Automation Markup Language or AutomationML, is a data modeling language created specifically for
industrial automation. AutomationML is object oriented and provides some powerful features like object
inheritance. This is realized using role classes and interface classes. This provides a high degree of
flexibility in modeling various data concepts, and it has been used successfully in many applications, such
as in the Process Industry with CAEX via IEC 62424. However, with these features comes complexity,
and given that CIP objects do not directly support object inheritance, AutomationML may not be the best
fit for CIP configuration policy, as not all of the functionality can or will be realized. AutomationML relies
on XML for the data encoding. XML is a well-used format, although it is not generally viewed as a
compact format, especially in the context of embedded devices. However, AutomationML is already
deployed in various use cases across the industrial automation space, often as a unifying format to
ensure different engineering tools are able to use the same data. Although this is a very important use
case it is quite different from the use case of distributing CIP Security configuration policy.

Custom JSON encoded document

A custom encoding could be defined using JSON to represent CIP objects, attributes and services. The
downside of this is that it requires some upfront work to define this. However, it would likely be very well
suited for CIP Security configuration policy, as it would be defined specifically for that purpose. JSON is a
very popular data exchange format that is compact and has wide support in parsers, some being quite
lightweight and optimized for embedded environments. JSON already has signing and encryption defined
via the JOSE standard; that could be applied for authenticity and confidentiality. Furthermore, a JSON
schema could be defined to better document the configuration policy format and to help possible future
enhancement efforts. For all these reasons this is an attractive option if the upfront development cost is
palatable.

Other Policy Languages
There are a number of “policy languages” that are already in use for various purposes. Although it is not
practical to analyze all of these languages, it is possible to speak about them generically. All of these
were created for a use other than with CIP Security policy, so they will of course not be well optimized for

2023 ODVA Industry Conference 8 ©2023 ODVA, Inc.

that. It may be possible in some cases for them to still be used, but that is not the purpose of these
languages and there will likely be limitations in using them for CIP Security policy.

An example of a language like this is Rego, which is used with Open Policy Agent (OPA). This language
is well optimized for access control, and although it is flexible, it would be challenging to tailor it to work
with CIP object/attribute configuration.

Encoded CIP Services

Another possibility is to simply use the encoded CIP services within a document format. CIP already
defines a format for calling services as a transmission protocol. This “on-the-wire” formatting could simply
be encoded into a document and used there. This is quite straightforward from the standpoint of capturing
the necessary configuration. However, it would not be human readable. Furthermore, it would not be
straightforward to encode information that might not be part of a CIP object, such as the revision of the
policy document. Signing and encryption would also need to be defined for this option. Although there are
many ways to sign and encrypt a file, there is no standard way that this would be done since it is a
custom file.

Technology Comparison
Building on the discussion above, some scoring can be done of these different choices against the
requirements. An arbitrary value of 0 – 10 is used for how well each requirement is met. A score of 10
means the requirement is met in an ideal way, 0 means it is not met at all.

 AutomationML Custom

JSON
Existing
Policy
Language
like Rego

Encoded
CIP
Commands

Explanation

Document
Format

10 10 10 10 All options provide data in a
document format

Authenticity 10 10 10 8 AutomationML, JSON, and most
existing policy languages already
have mechanisms for applying a
digital signature. A custom file of
encoded CIP commands would
need to define a mechanism or
choose from one of the many file
signing formats.

Confidentiality 10 10 10 8 Essentially the same scoring and
same reasoning as for
authenticity

Versioning 10 10 10 8 Once again, the same reasoning
holds; existing languages can use
existing versioning

Automatic
Discovery

n/a n/a n/a n/a None of these technologies
provide this, it would need to be
added through another means like
DNS-SD

Configuration
Retry

9 9 9 7 AutomationML, JSON and
existing policy languages can
easily encode this via a name-
value pair, or encoded CIP
commands as those don’t have a
seamless way to do this

Trigger a
Reconfiguration

9 9 9 7 Same reasoning as for
Configuration Retry

2023 ODVA Industry Conference 9 ©2023 ODVA, Inc.

Suitable for an
embedded
environment

6 10 2 10 JSON is a very lightweight
technology and would be
specifically tailored to this use
case, therefore it is highly
efficient. Many of the existing
languages are not well suited to
an embedded space.
AutomationML is used in some
embedded applications, but is
feature rich and built on XML,
which is not very lightweight. CIP
commands are already used in
the embedded space, so this
option is also very well suited.

Human
Readable

8 9 9 3 JSON and many existing
languages are very human
readable, AutomationML is a bit
more complex but still fits here.
CIP commands however are not
generally human readable.

Optimized for
CIP

6 9 1 10 A custom JSON for CIP Security
policy is well suited to delivering
CIP, and of course CIP
commands are perfectly suited to
this task. AutomationML is not,
and many existing policy
languages are not possible to use
for this purpose.

Totals 78 86 70 71

Conclusions

This paper explored some of the important use cases for automatic pull policy as a new approach to
delivering CIP Security configuration, discussed requirements, and evaluated some technology options.
The ability to pull all of the CIP Security configuration is important for enabling use cases which will be
important in the future, including securing devices within a private NAT network and client-only software.
It is likely that client-only software will grow in usage as more IIoT applications are realized in practice,
such as connecting software agents that harvest data or applications that reside on mobile devices.
Furthermore, the ability to replace a CIP device and deliver all of the CIP Security configuration
seamlessly will enable better workflows and further ease of use. Although it is possible to realize this
through a number of technologies, analysis shows that defining a JSON schema for encoding CIP
Security configuration is the best technology choice. Follow on work from this paper will include defining a
specification enhancement to Volume 8 of the CIP specification that defines a mechanism for this, likely
using JSON. Other follow on work includes an investigation into whether or not this might be suitable for
delivering other CIP configuration via a policy document. It is likely that the same requirements would
hold, although certain applications like CIP Motion or CIP Safety might have additional needs that were
not explored in this paper.

2023 ODVA Industry Conference 10 ©2023 ODVA, Inc.

References

[1] DNS-SD https://datatracker.ietf.org/doc/html/rfc6763
[2] mDNS https://datatracker.ietf.org/doc/html/rfc6762
[3] AutomationML https://www.automationml.org/
[4] OPA and Rego https://www.openpolicyagent.org/docs/latest/policy-language/
[5] JSON https://www.json.org/json-en.html
[6] ODVA, Inc. The CIP Networks Library, Volume 8: CIP Security™, PUB00299

**
The ideas, opinions, and recommendations expressed herein are intended to describe concepts of the author(s) for the possible use
of ODVA technologies and do not reflect the ideas, opinions, and recommendation of ODVA per se. Because ODVA technologies
may be applied in many diverse situations and in conjunction with products and systems from multiple vendors, the reader and
those responsible for specifying ODVA networks must determine for themselves the suitability and the suitability of ideas, opinions,
and recommendations expressed herein for intended use. Copyright ©2023 ODVA, Inc. All rights reserved. For permission to
reproduce excerpts of this material, with appropriate attribution to the author(s), please contact ODVA on: TEL +1 734-975-8840
FAX +1 734-922-0027 EMAIL odva@odva.org WEB www.odva.org. CIP, Common Industrial Protocol, CIP Energy, CIP Motion, CIP
Safety, CIP Sync, CIP Security, CompoNet, ControlNet, DeviceNet, and EtherNet/IP are trademarks of ODVA, Inc. All other
trademarks are property of their respective owners.

https://datatracker.ietf.org/doc/html/rfc6763
https://datatracker.ietf.org/doc/html/rfc6762
https://www.automationml.org/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.json.org/json-en.html
http://www.odva.org/

	Abstract
	Keywords
	Introduction
	Use Cases
	Deliver security config to private networks, e.g. through a NAT
	Deliver security config to “client-only” software
	Fully automatic device replacement
	Requirements
	Document format
	Authenticity
	Confidentiality
	Versioning
	Automatic discovery
	Configuring retry
	Trigger a reconfiguration
	Technology
	There are several possibilities for the technology used for the configuration policy formatting. Given that the configuration policy is to be encoded and delivered in a document, the transport mechanism is not very important; a document can be transmi...
	AutomationML
	Custom JSON encoded document
	Other Policy Languages
	Encoded CIP Services
	Conclusions
	References

