
2023 ODVA Industry Conference 1 ©2023 ODVA, Inc

 Constrained CIP Security Best Practices

Jakub Korbel

Networks Architect
Rockwell Automation

Jack Visoky

Principal Engineer and Security Architect
Rockwell Automation

Presented at the ODVA
2023 Industry Conference & 22nd Annual Meeting

October 18, 2023
El Vendrell, Spain

Abstract

Given the proliferation of cyberattacks it is of paramount importance to ensure that industrial

equipment has sufficient cyber defensive capabilities. Even devices with low resources are not

exempt from this, as attackers will target these devices knowing that it is not easy to support

security capabilities on them. However, with the CIP Security Resource-Constrained Profile, a

lightweight yet robust implementation of CIP Security is defined for this class of devices. Despite

this, it may still not be straightforward to add these security capabilities. This paper will provide

some best practices for applying the CIP Security Resource Constrained Profile to this class of

devices.

Keywords

CIP Security, Cybersecurity, Industrial Security, Resource Constrained Devices, IIoT, TLS, DTLS

2023 ODVA Industry Conference 2 ©2023 ODVA, Inc

Glossary

Term Description

AES Advanced Encryption Standard. A specification for the encryption of electronic
data established by the U.S. National Institute of Standards and Technology (NIST)
in 2001. This block cipher is based on symmetric keys and it is used to encrypt the
actual data flowing over a TLS or DTLS session.

Block cipher
mode of
operation

An algorithm that uses a block cipher to provide information security such as
confidentiality or authenticity. A block cipher (such as AES) by itself is only
suitable for the secure cryptographic transformation (encryption or decryption) of
one fixed-length group of bits called a block, while the mode of operation
describes how to repeatedly apply a cipher's single-block operation to securely
transform amounts of data larger than a block.

CA Certificate Authority [1]. An authority trusted by one or more entities to create
and digitally sign public-key certificates. Optionally the certificate authority may
create the subjects' keys.

CBC Cipher block chaining. A block cipher mode of operation for symmetric-key
cryptographic block ciphers (such as AES). Does not provide data authenticity, for
that, HMAC can be used in addition.

Certificate X.509 Certificate [1]. The public key of an entity, together with some other
information, rendered unforgeable by digital signature with the private key of the
certificate authority (CA) that issued it.

ChaCha20 A stream cipher. This stream cipher is based on symmetric keys and it is used to
encrypt the actual data flowing over a TLS or DTLS session.

Cipher Suite A cipher suite is a set of cryptographic algorithms used in establishment of and
communication over a secure connection [2]. A cipher suite specifies one
algorithm for each of the following tasks:

• Key exchange

• Signature

• Bulk encryption

• Message authentication

e.g.:

DH Diffie-Hellman. Key-agreement protocol, that allow two parties, each having a

public-private key pair, to establish a shared secret over an insecure channel.

DTLS Datagram Transport Layer Security [3]. This protocol allows client/server
applications to communicate in a way that is designed to prevent eavesdropping,
tampering, or message forgery. The DTLS protocol is based on the TLS protocol
and provides equivalent security guarantees.

EC Elliptic-curve (cryptography). An approach to public-key cryptography based on
the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys
compared to RSA cryptography while providing equivalent security.

2023 ODVA Industry Conference 3 ©2023 ODVA, Inc

ECC Elliptic-curve cryptography. Same as EC.

ECDH Elliptic-curve Diffie-Hellman. Same as DH but based on ECC.

ECDHE Elliptic-curve Diffie-Hellman with Ephemeral key. Same as ECDH but using
Ephemeral key.

ECDSA Elliptic-curve Digital Signature Algorithm.

Ephemeral key A key freshly generated for every key-agreement. This is the basis of the PFS
feature. Cipher suites are marked with an extra E after the key-agreement
protocol string, such as ECDH (Elliptic-Curve Diffie-Hellman) vs ECDHE (Elliptic-
Curve Diffie-Hellman with Ephemeral key)

FS (Perfect) Forward Secrecy. A security property where past negotiated session
keys are protected even if the associated static private keys are eventually
compromised. An example of this is:

• A and B establish a secure session via key agreement with static
public/private key pairs (usually using certificates)

• This session encrypts and authenticates the data exchanged using the
session key

• The session ends

• At some future date, A and B have their static private keys compromised,
which were the keys used to create the secure session key

• Even though these static keys are compromised, the data sent/received
during the previous secure session cannot be compromised; this is a due
to the property of perfect forward secrecy

In practice there are different way to achieve this security property, but it usually
has to do with generation of an intermediate ephemeral key pair by each
communicating party, and then using that to generate the session key

GCM Galois/Counter Mode. A block cipher mode of operation for symmetric-key
cryptographic block ciphers (such as AES) which is widely adopted for its
performance. The GCM algorithm provides both data authenticity (integrity) and
confidentiality.

IIoT Industrial Internet of Things [4]. Refers to interconnected sensors, instruments,
and other devices networked together with computers’ industrial applications,
including manufacturing and energy management.

MAC Message authentication code. A short piece of information used for
authenticating a message. It gives an assurance that the message was not
modified since the sender sent it.

PFS Perfect Forward Secrecy. See FS.

Poly1305 A hash family. Can be used to produce a MAC.

PSK Pre-shared key. A key that has been shared securely before any communication
can happen. In (D)TLS-PSK, these are symmetric keys used for authentication, and
can be combined with Diffie-Hellman key exchange.

RNG Random number generator. Often found prefixed by T – True RNG, where the
randomness is obtained from an entropy source, or P – Pseudo-RNG, where the
randomness is calculated, usually by software, and needs to be seeded from an
entropy source.

RSA Rivest–Shamir–Adleman. An approach to public-key cryptography based on easy
multiplication but difficult factorization of large prime numbers.

SHA A hash family. Can be used to produce a MAC.

2023 ODVA Industry Conference 4 ©2023 ODVA, Inc

TLS Transport Layer Security protocol [5]. TLS allows client/server applications to
communicate in a way that is designed to prevent eavesdropping, tampering, and
message forgery.

TRISIS Schneider Electric’s Triconex safety instrumented system-targeting malware.

X.509 Recommendation ITU-T X.509 | ISO/IEC 9594-8 [1]. It defines frameworks for
public-key infrastructure (PKI) and privilege management infrastructure (PMI). It
introduces the basic concept of asymmetric cryptographic techniques. It specifies
the following data types: public-key certificate, attribute certificate, certificate
revocation list (CRL) and attribute certificate revocation list (ACRL). It also defines
several certificates and CRL extensions, and it defines directory schema
information allowing PKI and PMI related data to be stored in a directory. In
addition, it defines entity types, such as certification authority (CA), attribute
authority (AA), relying party, privilege verifier, trust broker and trust anchor. It
specifies the principles for certificate validation, validation path, certificate policy,
etc. It also includes a specification for authorization validation lists that allow for
fast validation and restrictions on communications.

2023 ODVA Industry Conference 5 ©2023 ODVA, Inc

Introduction

It is well known that cyberattacks are increasing in both frequency and severity. Given the increased

connectivity of IoT and other devices, attackers are no longer limited to “traditional” targets like servers

and Internet websites. Examples of devices being attacked are readily available. One of the most famous

is the Mirai Botnet, which used malware to control many IoT devices such as cameras to launch

Distributed Denial of Service (DDoS) attacks [6]. Another infamous incident of device hacking occurred

when security researchers demonstrated that they could take control of a Jeep and cause it to shut off

the engine or disable braking [7]. Closer to the Industrial Controls space there was a hack of a Schneider

Electric Triconix Safety Integrated System (SIS) done in 2017 [8].

Although much could be concluded from these and other examples of cyberattacks against devices,

there are a few important takeaways to motivate the need for strong security protections at low levels:

1. Low-end devices will not be overlooked by hackers. Attacks targeting devices like IoT cameras
shows that attackers are not going to simply overlook a device because it is resource
constrained. The Mirai Botnet is especially interesting in the sense that the IoT devices were
commandeered to launch other attacks; even if the device itself is not of great import it can still
be hacked as a means to another end.

2. A connected device is a potentially vulnerable attack surface. If a device includes connectivity,
then it should be considered a potential target for attackers. Although in the case of Mirai the
devices were connected directly to the Internet, in the case of the Jeep exploit and TRISIS they
were not. Therefore, just because a device is not directly on the Internet doesn’t mean it won’t
be a target.

3. Given the above two, security protections need to be available for resource-constrained
connected devices. It is important that these devices are able to implement protections, as they
are clearly targets of attacks.

The rest of this paper will discuss different areas of consideration for applying security to a constrained

device and highlight best practices.

Multitasking Discussion

When designing low-end communication device firmware, a decision needs to be made on how to

handle concurrent tasks and events. In computing, there are two categories of computer multitasking –

preemptive multitasking and non-preemptive (cooperative) multitasking.

Preemptive multitasking
In preemptive multitasking, used by most modern operating systems (OS), the task scheduling

scheme includes preemption. Here preemption means interruption of a currently running task,

usually by utilizing hardware interrupts and interrupt service routines (ISR) [9]. These routines

are usually used by an operating system's scheduler, which schedules the highest-priority active

task to run or/and employs more advanced methods like static and dynamic time-slicing [10].

2023 ODVA Industry Conference 6 ©2023 ODVA, Inc

Scheduling a different task means switching task context. Processor flags, and key registers such

as Program Counter (PC) and Stack Pointer (SP) of the preempted task needs to be saved [9].

Then the new task’s context needs to be restored, which is a performance-costly operation as

context-switches can occur abundantly depending on the scheduler algorithm and its variables.

In preemptive multitasking, task synchronization needs to be in place by implementing

synchronization primitives, for example critical sections, mutexes, semaphores, etc. [11] and

each task needs its own distinct stack, which increases the system’s Random Access Memory

(RAM) consumption and also impacts performance as tasks need to wait for other tasks using

the same resource or entering the same critical section. Even though the context switches and

synchronization are costly, any blocking operations and heavy calculations cannot halt the

whole system’s runtime as they will be preempted based on the scheduling algorithm.

Non-preemptive (cooperative) multitasking
In cooperative multitasking, the task scheduling is simpler. The task decides when it is ready to

give up control of the processor [12]. Hence, there is no need to perform complex costly context

switching in terms of RAM and CPU and the scheduler can be as simple as a loop periodically

firing task routines which yield CPU by a simple return. Apart from synchronizing tasks and ISRs,

which can preempt running tasks and run temporarily instead of them, no synchronization

primitives are needed [11] and neither is OS providing them. On the other hand, tasks must

behave nicely, i.e., not perform blocking or lengthy operations and even one misbehaving task

can halt the whole system.

Implications for CIP Security Constrained Profile Devices
Modern operating systems are designed to run many programs at once and even allow users to

run what they like. Thus, non-preemptive multitasking is unacceptable for them as any

misbehaving program could bring the system to a halt. This is, however, not a concern for

constrained communication device firmware, where programmers have complete control over

what is running in the system. Due to the nature of stack allocation [13], which can reclaim used

space for different operations, it is memory-effective to utilize stack allocations as much as

possible and share one stack for all tasks. As it will be demonstrated in the “Error! Reference

source not found.” section, this is even more pronounced considering transport layer security

with RAM-intensive operations. It is hence a best practice to use cooperative multitasking in

highly constrained devices, for less constrained, single-CPU devices with developers’ full control

over them, it should be considered as well based on the application and environment.

The Handshake and Connection Memory Footprint
Handshaking is an important part in network communication, where two counterparts establish a

connection in between. For connectionless protocols, such as UDP, there can be no handshake involved

and messages could be exchanged without the counterparts keeping any internal state. This, however,

changes with DTLS, where encryption context containing shared secrets to encrypt and decrypt

messages, is needed to be kept on both parts. In a way, this makes DTLS more complex and memory

consuming than TLS, because TLS can exploit the underlying, already connected, TCP transport, as it will

be demonstrated in Analysis section.

2023 ODVA Industry Conference 7 ©2023 ODVA, Inc

Here is how the handshake process looks like for DTLS v1.2 [3]:

Figure 1: Message flights for a full DTLS v1.2 handshake

This is how the DTLS v1.2 handshake looks like for IO over DTLS on port 2221/udp. For explicit message

channel over DTLS on port 44818/udp, as defined in the CIP Security Constrained Profile, this is

preceded by StartDTLS EtherNet/IP™ messages signifying that a DTLS session follows with the IP address

and UDP port of the client.

1. ClientHello. The client sends a list of their TLS version, Cipher Suites alongside client random
value.

2. HelloVerifyRequest. The server asks for verification using a cookie to prevent DoS attacks.
3. ClientHello. The client re-sends the Client Hello with a cookie.
4. ServerHello. The server picks the best version of TLS and the best Cipher Suite from client’s list,

if any is applicable and sends server random value.
5. If this is a ECDHE and PSK-based suite:

a. ServerKeyExchange. The server sends its DH parameters, including a newly generated
DH public key, if Ephemeral suites are used. Server sends an opaque, application
dependent identity hint to the client. PSK is used for authentication and is embedded in
the pre-master secret.

b. ServerHelloDone. Indication of the server completing its ServerHello.
c. ClientKeyExchange. The client sends its DH parameters, including a newly generated

client public key, if Ephemeral suites are used. It also sends the identity opaque value
based on the identity hint.

d. The server and client establish a shared secret and send ChangeCipherSpec. After that,
the communication is encrypted.

6. If this is an ECDHE and ECDSA-based suite:
a. Certificate. The server sends its certificate or certificate chain.

2023 ODVA Industry Conference 8 ©2023 ODVA, Inc

b. ServerKeyExchange. The server sends its DH parameters, including a newly generated
server public key, if Ephemeral suites are used. It also sends a signature of previous
messages authenticated by the private key that belongs to the server Certificate.

c. CertificateRequest. If the server choses to verify the client, who then must send its
Certificate and the CertificateVerify message.

d. ServerHelloDone. Indication of the server completing its ServerHello.
e. If the server requested client certificate authentication, Certificate is sent from the

client.
f. ClientKeyExchange. The client sends its DH parameters, including a newly generated

public key, if Ephemeral suites are used. If certificate authentication was requested, it
also sends a signature of previous messages authenticated by the private key that
belongs to the client.

g. The server and client establish a shared secret and send ChangeCipherSpec. After that,
the communication is encrypted.

7. Finish. Signifies completion of the handshake and it is encrypted by the symmetric shared key.

Analysis
To provide basis for following claims, a testware application has been developed and published on

github [14] and was used to check memory consumption (stack, heap) and performance profiling. This

testware application used two common TLS libraries, wolfSSL [15] and mbedTLS [16] to make more

general statements applicable to multiple practical applications. The test application tested the Server

and Client side of the communication for TLSv1.2 and DTLSv1.2 using multiple cipher suites with various

properties. Only one certificate has been set for a device and another for CA, which directly signed it.

Thus, no certificate chain was used, which could potentially render ECC-based cipher suites more

efficient.

The most memory intensive part of the (D)TLS communication is undoubtedly the handshake, as can be

seen from the difference between “Heap” Column meaning handshake peak memory and “Heap 1

Conn” column in Table 1: Embedded TLS Libraries Handshake and Connection Heap and Stack

Consumption in bytes, marking remaining allocated size for connection context extended of the memory

needed to transmit or receive a simple 11-byte-long “Hello world” message.

The largest memory footprint can be seen when Elliptic-Curve Diffie-Hellman with Ephemeral EC keypair

generation is used. Contrary to popular belief, Elliptic-Curve-based Cipher Suites can consume more

memory during handshakes than RSA-based Cipher Suites even though their keys are smaller in size.

This is especially true for the client side. On the server side, both TLS libraries consume similar amounts

of memory and the difference is not so decisive.

DTLS is also more memory consuming than TLS in general for handshakes but also for keeping one

connection alive, which is more pronounced on the server side. This is likely caused by the DTLS having

to decrypt the packet as a whole and serve it to the user’s provided buffer at once as it is customary in

the Berkley socket API. For example, WolfSSL is allocating the full size of user-specified receive buffer

enhanced for padding and DTLS record headers for packet reception. This is offset by DTLS not needing a

reliable stream protocol underneath, where the management of the session is the responsibility of the

TCP/IP stack and the memory consumption can then be visible there.

2023 ODVA Industry Conference 9 ©2023 ODVA, Inc

Going for ECC and DTLS may thus not be the easy path for Constrained security, and it may require

significant tweaks in the (D)TLS library compilation options.

Further memory savings by using PSK as opposed to ECC certificates are negligible (but can grow in

importance when certificate chains are being sent), although for some reason mbedTLS had significant

memory savings with PSK over ECC on the client side. Using PSK has significant memory benefits over

RSA certificates with large keys.

ChaCha20-Poly1305 seems to be best suited for constrained purposes. With its post-handshake heap

usage per 1 connection only NULL-SHA256 cipher suites is comparable (which provides no

confidentiality).

Handshake operations are also stack intensive. If the client and server side run in two separate threads,

in some configurations the RAM consumption can grow up to 20K just for parallel stacks of a multi-

threaded design but staying at 10K for Single-Threaded. To lower stack consumption, it appears this

mbedTLS configuration was better suitable, but the vast amounts of memory were spent on heap,

rendering the actual RAM savings negative for one connection.

2023 ODVA Industry Conference 10 ©2023 ODVA, Inc

Method Cipher Suite wolfSSL mbedTLS

Stack Heap1 Heap 1
Conn

Stack Heap2 Heap 1
Conn

TLS Client ECDHE-ECDSA-AES128-CBC-SHA256 10488 8452 3280 9896 37838 5282

TLS Client ECDHE-PSK-AES128-CBC-SHA256 10488 8452 3280 7928 33621 2994

TLS Client DHE-RSA-AES256-SHA256 10136 5147 3280 8520 38432 6943

TLS Client DHE-PSK-AES128-CBC-SHA256 10136 4015 3280 7256 34395 2994

TLS Client ECDHE-ECDSA-AES128-GCM-SHA256 10488 8452 3330 9896 37846 5658

TLS Client ECDHE-PSK-NULL-SHA256 10488 8452 1424 7928 33045 2418

TLS Client ECDHE-PSK-CHACHA20-POLY1305 10488 8452 1816 7928 33053 2426

DTLS Client ECDHE-ECDSA-AES128-CBC-SHA256 10488 9150 5434 9896 37786 5282

DTLS Client ECDHE-PSK-AES128-CBC-SHA256 10488 8468 5434 7928 33560 2994

DTLS Client DHE-RSA-AES256-SHA256 10136 5959 5947 8520 38344 6943

DTLS Client DHE-PSK-AES128-CBC-SHA256 10136 4415 5947 7256 34159 2994

DTLS Client ECDHE-ECDSA-AES128-GCM-SHA256 10488 9150 5484 9896 37794 5658

DTLS Client ECDHE-PSK-NULL-SHA256 10488 8468 3738 7928 32984 2418

DTLS Client ECDHE-PSK-CHACHA20-POLY1305 10488 8468 3970 7928 32992 2426

TLS Server ECDHE-ECDSA-AES128-CBC-SHA256 9736 8066 3296 4968 33480 2994

TLS Server ECDHE-PSK-AES128-CBC-SHA256 9560 8133 3296 3800 33375 2994

TLS Server DHE-RSA-AES256-SHA256 9176 8524 3296 3688 37147 4810

TLS Server DHE-PSK-AES128-CBC-SHA256 9176 3272 3296 3272 33875 2994

TLS Server ECDHE-ECDSA-AES128-GCM-SHA256 9560 8067 3346 4968 33751 3370

TLS Server ECDHE-PSK-NULL-SHA256 9560 8133 1440 3800 32799 2418

TLS Server ECDHE-PSK-CHACHA20-POLY1305 9560 8133 1832 3800 32807 2426

DTLS Server ECDHE-ECDSA-AES128-CBC-SHA256 9560 10608 8814 4968 34154 6113

DTLS Server ECDHE-PSK-AES128-CBC-SHA256 9560 9888 8814 3800 33416 6113

DTLS Server DHE-RSA-AES256-SHA256 9176 10711 6150 3688 38119 9743

DTLS Server DHE-PSK-AES128-CBC-SHA256 9176 5004 6150 3272 34113 7927

DTLS Server ECDHE-ECDSA-AES128-GCM-SHA256 9560 10605 8864 4968 34528 6489

DTLS Server ECDHE-PSK-NULL-SHA256 9560 9884 7118 3800 32836 5537

DTLS Server ECDHE-PSK-CHACHA20-POLY1305 9560 9884 7350 3800 32844 5545

Table 1: Embedded TLS Libraries Handshake and Connection Heap and Stack Consumption in bytes

1 During receive operation, wolfSSL dynamically allocates a buffer for incoming encrypted UDP packet, thus these
measured values contain additional 1500+ bytes on DTLS server side. For every receive call, the user will need to
have two times the buffer, one for decrypted (user-allocated) and one for encrypted (wolfssl-allocated) data.
2 Per mbedTLS configuration file documentation, mbedTLS allocates 32768 bytes (maximum 16384 bytes per [5]
for both sides) for a handshake as a reasonable maximum. This is included in the measured values.

2023 ODVA Industry Conference 11 ©2023 ODVA, Inc

Performance Considerations for Handshakes

The handshake operation is also performance intensive. Here, handshake operation refers to the

authentication and key agreement performed at the start of a DTLS session. This involves several

asymmetric cryptography calculations as well as the generation of random data, which are both fairly

processor intensive operations. In selected suites, where PFS needs to be assured, ephemeral versions

of Diffie-Hellman key exchange and Elliptic-Curve Diffie-Hellman key exchange are used. Profiling on the

memory analysis testware showed, that generating a new DH key-pair can be a very slow operation

(e.g., on constrained, single-core devices up to 100MHz CPU clock rate without hardware acceleration, it

can take seconds) and it takes similar time to sign and verify in the ECDSA authentication phase. Hashing

is also a very time-consuming operation happening throughout the communication, but profiling did not

draw it as a significant handshake performance bottleneck. If possible, it is beneficial to offload key

generation RNG and Sign & Verify operations to the hardware or to use asynchronous operations. This

allows for other communication channels, such as CIP I/O, to run without significant impact. In a wolfSSL

analysis [17], various crypto operations, such as RNG, SHA and SHA256 but even ECC key generation,

ECDHE and ECDSA [18] could be sped up by several (usually one or two) orders of magnitude. Time

consuming handshakes are even more pronounced when the device uses a Single-Threaded approach,

since during the calculation nothing else can run. Pre-calculating Ephemeral keys in advance and using

them when a handshake is requested is also a potential mitigation to consider. These methods can be

combined to provide even smoother operation, so pre-calculating ephemeral keys, using PSK instead of

ECDSA, offloading SHA256 and AES operations to hardware and using asynchronous operations in

Single-Threaded environment may be the correct path forward in Constrained environments.

Memory Savings

The CIP Security Resource Constrained Profile deliberately removed components of the other profiles

that took up significant memory but are not strictly necessary for a secure protocol. The most significant

component is the support for provisioned certificates. The EtherNet/IP Confidentiality Profile supports

provisioning of a user-signed certificate, as well as the provisioning of multiple Certificate Authority (CA)

or End-Entity (EE) certificates. This implies support for the following components:

• File Object

• Certificate Management Object

• X.509 Parsing Code

• Certificate-based Cipher Suites

However, removing support for these results in significant memory savings. Although exact values will

vary greatly from one platform and implementation to another, it can be instructive to view some

concrete numbers. As an example, one can compare two Rockwell Automation proprietary

implementations, one with the EtherNet/IP Confidentiality Profile, the other with the CIP Security

2023 ODVA Industry Conference 12 ©2023 ODVA, Inc

Resource Constrained Profile. Of course, the former implemented the full EtherNet/IP Profile, and the

latter the Constrained EtherNet/IP Profile. The constrained implementation reduced the build footprint

by over 50%. Not all of this came from the differences in CIP Security profile, some was the base

EtherNet/IP as well. However, this provides quite significant savings in terms of footprint. Note here the

build footprint refers to code size, read-only memory (constants), and read-write memory (global/static

variables).

File Object
CIP Security uses the CIP File Object to store any certificate, whether it is the device’s identity certificate,

an additional trusted CA certificate, or an additional trusted EE certificate. This is a reasonable decision

as the File Object is a generic mechanism for storing files used in CIP, and certificates are files. However,

with this generic mechanism comes the complexity of additional objects and services which can be

removed if certificates are not supported. On an existing sample implementation the File Object

resulted in about 2 Kilobytes of footprint, which can be a significant amount of savings within a resource

constrained environment.

Certificate Management Object
The Certificate Management Object is a CIP object defined to allow for common configuration and

management of a certificate. For CIP Security, it is used to manage a device’s identity certificate, as well

as trust for the Certificate Authority that has signed the device’s identity certificate. However, to this

end, multiple attributes and services are included. On an existing sample implementation the Certificate

Management Object contributed around 300 bytes of footprint. Although not as significant as the File

Object, this still is measurable savings in resource usage.

X.509 Parsing Code
Supporting certificates means supporting the ability to parse the X.509 data encoded within the

certificate. X.509 certificates can include complex data types and custom extensions, which even if not

used by a device would still need to be parsed. Then there are some extensions which are required for

device usage like Subject Alternative Name. Much has been written about the complexity of X.509

certificates and the associated parsing needed [19] [20]. As such, including support for X.509 parsing

adds significant complexity, as well as memory usage. Exact values for memory usage are not easy to

determine as this code is often bound up in the (D)TLS library used. However, even a cursory review of

open source (D)TLS libraries can show that X.509 support code is quite significant. Removing support for

parsing certificates results in significant savings on memory.

Certificate-Based Cipher Suites
The Constrained CIP Security Profile removes support for any certificate-based cipher suites, except in

the Factory Default state, in which case only one cipher suite is supported. Instead it makes use of PSK-

based cipher suites. There are only 3 PSK suites required for the CIP Security Resource Constrained

Profile:

• TLS_ECDHE_PSK_WITH_NULL_SHA256

• TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256

• TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256

2023 ODVA Industry Conference 13 ©2023 ODVA, Inc

The choice of these ciphers was deliberate. ChaCha20-Poly1305 is particularly well-suited to constrained

environments that do not have hardware accelerators. AES GCM is very efficient when a hardware

accelerator is present [21]. The non-encrypted algorithm provides a lightweight option where the data is

not encrypted and only uses SHA-256 to authenticate.

Note that one important decision regarding these cipher suites was to include cipher suites that provide

perfect forward secrecy. All of these ciphers are Elliptic Curve Diffie Hellman ciphers, which include an

ephemeral Elliptic Curve key generated during the handshake. This results in more memory usage during

the handshake, as well as more code size. However, it was thought that this is a worthwhile tradeoff, as

it provides good information assurance benefits against compromise of the PSK [22]. However, if code

size becomes too much of an issue for constrained EtherNet/IP products, it remains an option to allow

for even lighter-weight ciphers that do not provide perfect forward secrecy. However, note that TLS 1.3

and DTLS 1.3 is meant for ciphers which support perfect forward secrecy. That is, a PSK without an

Ephemeral Diffie Hellman key can be used in TLS 1.3, although the expectation is that this is used for

session resumption, to then be followed by a certificate exchange. To use TLS 1.3 without PFS would be

to use a PSK without an Ephemeral Diffie Hellman key, which may be technically feasible but is not the

documented/intended use. Although CIP Security is currently standardized on TLS 1.2 and DTLS 1.2, it

will move to supporting TLS 1.3 and DTLS 1.3 in the near future.

Security Implications

Removing support for certificates does provide significant savings in terms of memory usage and

complexity. However, there is of course a trade-off to these savings. From an information assurance

standpoint, certificates provide a unique identity for each communicating party in a given group. Of

course, this is only true if certificates are used for bi-directional authentication, support of which is

required in CIP Security. However, PSKs do not provide this same assurance; rather a PSK is often shared

amongst a group. If more than two parties share a given PSK then there is no assurance at the TLS layer

that can distinguish one party from another, which has an impact on non-repudiation and spoofing

security properties. However, for small-scale systems this is often a reasonable trade-off. Furthermore,

some PSK uses may be vulnerable to reflection attacks of the type described in [23]. Regardless, Threat

Modeling of a given system is necessary to understand the information assurance properties provided

by the CIP Security Resource Constrained Profile. A given system may require further mitigations or

compensating countermeasures to achieve a desired security posture.

Although user-generated certificates are not supported in the CIP Security Resource Constrained Profile,

this profile does support an initial certificate. This has the benefit of allowing authentic and confidential

deployment of security credentials like PSKs when a device is in the factory default state. Furthermore,

assuming the initial certificate used is an IEEE 802.1AR IDevID, which is the recommended

implementation, this can also provide identity and authenticity assurances of the device in question.

Even though the device has a unique certificate, it still does not need to parse certificate data. That is,

when the initial connection is made, the device simply “serves” the certificate in the (D)TLS handshake;

it does not request a client certificate. Also, because this certificate is not dynamic there is no need to

implement the File Object or Certificate Management Object. Therefore this certificate has very little

2023 ODVA Industry Conference 14 ©2023 ODVA, Inc

memory impact, although maintaining it on a device provides significant benefit to the initial

commissioning and device authenticity.

Conclusions

The CIP Security Resource Constrained Profile provides robust cyber security assurances scaled down to

devices which cannot feasibly implement the other CIP Security profiles. However, this does not come

without trade-offs. Using PSKs instead of certificates provides significant savings on code complexity and

memory usage, although some of the information assurances change. PSKs do not provide the same

level of non-repudiation, or of spoofing by already trusted endpoints as certificates. Depending on the

threat model for a given product or system these trade-offs may be acceptable, and in some cases even

negligible. However it is important to be aware of this and to spend the appropriate time and effort

documenting risks and responding to them.

Although the CIP Security Resource Constrained Profile provides significant savings in terms of resources

required to implement it, there are still important considerations for product vendors. One of the

biggest areas is around the tasking architecture of the platform. Whether multi-tasking is used and what

scheme is chosen can have significant impact on the performance of security within a constrained

device. Vendors should consider non-preemptive multitasking as it is particularly well-suited to a

constrained environment device supporting DTLS communication. Furthermore, it is recommended to

preference stack allocations for memory usage in a constrained environment, as the stack memory may

be easily reclaimed for other uses once it is no longer needed for security intensive operations like DTLS

handshakes. It is very important to be mindful of the DTLS handshake and how that will be processed,

especially if multiple handshakes can occur at a time, since this is likely to be the most resource

intensive operation related to CIP Security in a constrained environment.

The CIP Security Resource-Constrained Profile currently mandates cipher suites which provide perfect

forward secrecy, which is an important security attribute and is standardized in TLS 1.3. However, this

comes at some non-trivial memory usage and performance cost. If in practice this is shown to be too

burdensome to highly constrained devices then the SIG will need to consider providing support for

cipher suites which do not provide Perfect Forward Secrecy (e.g. cipher suites with PSKs that do not use

Ephemeral Diffie Hellman keys). This is an important area for the SIG to monitor and react to as product

developers begin to implement the CIP Security Resource-Constrained Profile.

2023 ODVA Industry Conference 15 ©2023 ODVA, Inc

References

[1] International Telecommunication Union, "Recommendation ITU-T X.509," October 2019. [Online].

Available: https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201910-I!!PDF-

E&type=items. [Accessed 10 September 2023].

[2] Microsoft, "Cipher Suites in TLS/SSL (Schannel SSP)," 14 July 2023. [Online]. Available:

https://learn.microsoft.com/en-au/windows/win32/secauthn/cipher-suites-in-schannel.

[Accessed 10 September 2023].

[3] E. Rescorla and N. Modadugu, "Datagram Transport Layer Security Version 1.2," January 2012.

[Online]. Available: https://datatracker.ietf.org/doc/html/rfc6347. [Accessed 10 September

2023].

[4] H. Boyes, B. Hallaq, J. Cunningham and T. Watson, "The industrial internet of things (IIoT): An

analysis framework," Computers in Industry, vol. 101, pp. 1-12, 2018.

[5] T. Dierks and E. Rescorla, "The Transport Layer Security (TLS) Protocol," August 2008. [Online].

Available: https://datatracker.ietf.org/doc/html/rfc5246#section-6.2.1. [Accessed 10 July 2023].

[6] B. Krebs, "krebsonsecurity.com," 21 September 2016. [Online]. Available:

https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/. [Accessed 10 July

2023].

[7] C. Miller and C. Valasek, "Remote Exploitation of an Unaltered Passenger Vehicle," 10 August

2015. [Online]. Available: https://illmatics.com/Remote%20Car%20Hacking.pdf. [Accessed 10 July

2023].

[8] Dragos Inc., "TRISIS Malware - Analysis of Safety System Targeted Malware," Dragos Inc., 13

December 2017. [Online]. Available: https://www.dragos.com/wp-content/uploads/TRISIS-

01.pdf. [Accessed 10 July 2023].

[9] M. Barr, "Introduction to Preemptive Multitasking.," 6 March 2003. [Online]. Available:

https://www.embedded.com/introduction-to-preemptive-multitasking/. [Accessed 10 July 2023].

[10] M. Kalin, "CFS: Completely Fair Process Scheduling in Linux.," 5 February 2019. [Online].

Available: https://opensource.com/article/19/2/fair-scheduling-linux. [Accessed 10 July 2023].

[11] D. Sergio, L. Brandon and S. Kiran, "Computer Science 111 Lecture 9 - Synchronization Primitives

and Deadlock," 16 February 2015. [Online]. Available:

http://web.cs.ucla.edu/classes/winter15/cs111/scribe/9b/index.html. [Accessed 10 July 2023].

2023 ODVA Industry Conference 16 ©2023 ODVA, Inc

[12] P. K. Jr., "Heavyweight Tasking," Embedded Systems Programming, vol. 3, no. 4, pp. 43-52, April

1990.

[13] B. Kinariwala and T. Dobry, "Programming in C," University of Hawai`i, 3 September 1994.

[Online]. Available: http://ee.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.html.

[Accessed 10 July 2023].

[14] J. Korbel, "TLS Library Benchmark," 10 July 2023. [Online]. Available:

https://github.com/JKorbelRA/tlsbm. [Accessed 10 July 2023].

[15] wolfSSL Inc., "wolfSSL - Embedded SSL/TLS Library," 10 July 2023. [Online]. Available:

https://www.wolfssl.com/. [Accessed 10 July 2023].

[16] Linaro Limited, "Mbed TLS - Trusted Firmware," 11 September 2023. [Online]. Available:

https://www.trustedfirmware.org/projects/mbed-tls/. [Accessed 10 July 2023].

[17] wolfSSL Inc., "Benchmarking wolfSSL and wolfCrypt," [Online]. Available:

https://www.wolfssl.com/docs/benchmarks/. [Accessed 10 July 2023].

[18] Microchip Technology Inc., "ATECC508A Summary Data Sheet," 18 December 2017. [Online].

Available:

https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/D

ataSheets/20005928A.pdf. [Accessed 10 July 2023].

[19] N. M. G. P. Alessandro Barenghi, "SYSTEMATIC PARSING OF X.509: ERADICATING SECURITY

ISSUES WITH A PARSE TREE," Journal of Computer Security, vol. 26, no. 6, p. 32, 2018.

[20] P. M. R. B. Arnaud Ebalard, "Journey to a RTE-free X.509 parser".

[21] Y. Nir and A. Langley, "RFC 8439: ChaCha20 and Poly1305 for IETF Protocols," [Online]. Available:

https://www.rfc-editor.org/rfc/rfc8439.txt.

[22] A. Langley, "Protecting data for the long term with forward secrecy," Google, 22 November 2011.

[Online]. Available: https://security.googleblog.com/2011/11/protecting-data-for-long-term-

with.html.

[23] N. Drucker and S. Gueron, "Selfie: reflections on TLS 1.3 with PSK," Cryptology ePrint Archive, vol.

2019, no. 347, 2019.

[24] wolfSSL Inc., "wolfSSL Resource Use," wolfSSL Inc., 27 July 2016. [Online]. Available:

https://www.wolfssl.com/files/flyers/wolfssl_resource_use.pdf. [Accessed 10 July 2023].

2023 ODVA Industry Conference 17 ©2023 ODVA, Inc

**
The ideas, opinions, and recommendations expressed herein are intended to describe concepts of the author(s) for the possible use
of ODVA technologies and do not reflect the ideas, opinions, and recommendation of ODVA per se. Because ODVA technologies
may be applied in many diverse situations and in conjunction with products and systems from multiple vendors, the reader and
those responsible for specifying ODVA networks must determine for themselves the suitability and the suitability of ideas, opinions,
and recommendations expressed herein for intended use. Copyright ©2023 ODVA, Inc. All rights reserved. For permission to
reproduce excerpts of this material, with appropriate attribution to the author(s), please contact ODVA on: TEL +1 734-975-8840
FAX +1 734-922-0027 EMAIL odva@odva.org WEB www.odva.org. CIP, Common Industrial Protocol, CIP Energy, CIP Motion, CIP
Safety, CIP Sync, CIP Security, CompoNet, ControlNet, DeviceNet, and EtherNet/IP are trademarks of ODVA, Inc. All other
trademarks are property of their respective owners.

http://www.odva.org/

