

The Other 5 Wires in the SPE In-Cabinet Solution

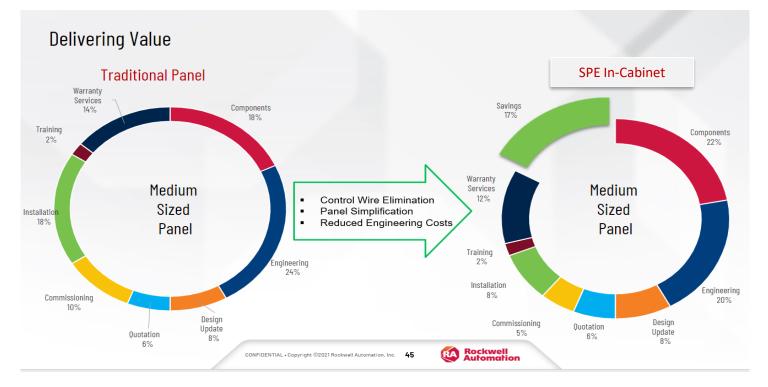
Changing the way Industrial Control Panels are designed, built and commissioned

Yutao (Tony) Wang Kelly Passineau Chirag Malkan Rockwell Automation, Inc. Rockwell Automation, Inc. Rockwell Automation, Inc.

Conventional Industrial Panel "Before"

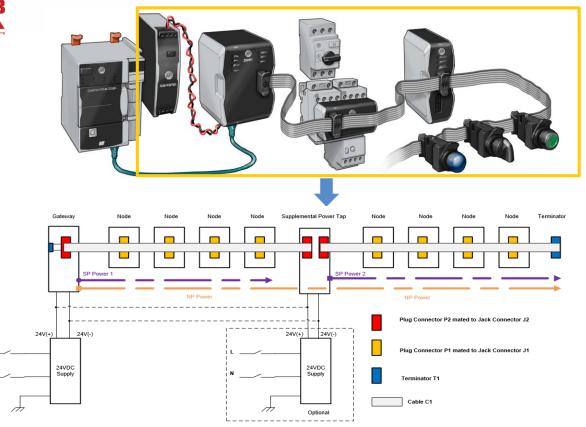
- Manual wiring takes longer
- High potential for mis-wire or lose connections
- Manual wire connection test takes longer
- Densely packed panel reduces thermal dissipation reducing panel life or requires bigger panel

Technical Track © 2023 ODVA, Inc.


Industrial SPE In-Cabinet Panel

- 10% or more reduction in panel space
- 80% reduction in wiring and time required to wire
- **50%** reduction in testing time
- **30%** reduction in project eng. time
- Optimized for thermal disposition for long panel life
- Helps reduce time & effort to diagnose a problem
- Due to reduced downtime by increasing visibility of panel diagnostics & overall health
- With highly secure smart infrastruture

Technical Track © 2023 ODVA, Inc.



Total Cost of Ownership – Lowered with ODVA SPE Industrial In-Cabinet Media

Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

System Overview

- NP Power 4Amp continuous for 40 nodes
- SP Power 4Amp continuous, 8Amp up to 100ms for driving large load, contactor coil, etc.
- 25-meter total cable length
- Multi-drop 10Base-T1S based on IEEE 802.3cg standard

Technical Track © 2023 ODVA, Inc.

- Half-duplex multidrop (8 nodes, 25m)
- Half-duplex or full-duplex pointto-point
- 10 Mb/s, 1Vpp
- Multidrop allows larger PHY count provided the mixing segment specifications in 147.8 are met

ODVA Spec

Table 8-10.4 IEEE PHY Options and Settings

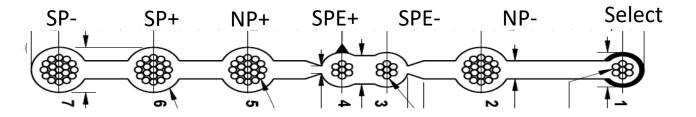
IEEE PHY Option and Setting	Description	IEEE Reference	ODVA Support
*MULT	Multidrop mode	Clause 147.8	Required
*INS-MIX	Installation / Mixing segment	Clause 147.8	Required
aPLCATransmitOpportunityTimer	This value is assigned to define the time between PLCA transmit opportunities for the node.	<u>Clause 30.16</u>	$\frac{\text{Required}}{\text{Value} = 32}$

Table 8-10.5 Cable C1 Specifications and Requirements

	Minimum Specifications and Requirements	
Electrical		
Insertion Loss,	Measured per section 8-10.4.4, for SPE pair, at 25 m length	
IL (dB)	0.25 * (2.73 * sqrt(f) + 0.026 * f + 0.375 / sqrt(f))	
	$0.3 \le f \le 40$ where f is the frequency in MHz	
Return Loss,	Measured per section 8-10.4.4, for SPE pair, at 25 m length	
RL (dB)	$24 + 5 * \log_{10}(f/10), 24 \text{ max.}$	
	$0.3 \le f \le 40$ where f is the frequency in MHz	
Mode Conversion,	Measured per section 8-10.4.4, for SPE pair, at 25 m length	
MC (dB)	TCL and TCTL: 46 - 10 * log ₁₀ (f), 40 max.	
	$0.3 \le f \le 100$ where f is the frequency in MHz	
	Aodelling Simulation Mea	asurement
IEEE Mixing Segment Characteristics	40 Total Devices, 25 m Cable	ODVA Spec for Cable + Connecto

IEEE 802.3cg-2019 IEEE Standard for Ethernet - Amendment 5:

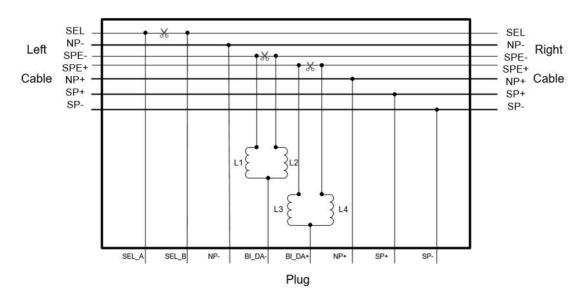
The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP


2023 Industry Conference & 22nd Annual Meeting All rights reserved.

IEEE

SPE In-Cabinet Cable

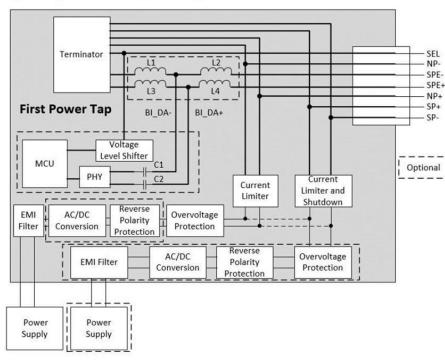
- 7 Conductors
- 20AWG wires (19 strands) for NP-, NP+, SP+, SP-
- 24AWG wires (7 strands) for SPE+, SPE-, Select line
- 4A current for NP-, NP+, SP+, SP- lines
- SPE conductors will be used as keying feature to prevent wrong connector orientation.



Technical Track © 2023 ODVA, Inc.

SPE Industrial In-Cabinet Connector

Figure 8-10.3 Plug Connector P1 Circuit

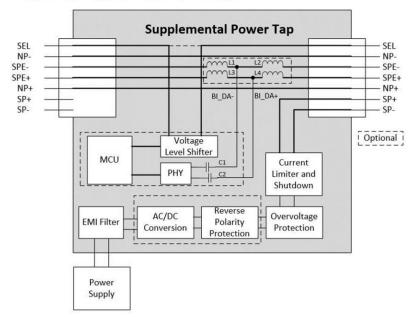

- Inline inductors to compensate for node capacitance.
- Ease of use for field termination with a standard plier
- SPE and Select line were severed.

Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

NP Power for Communication Electronics

Figure 8-10.22 First Power Tap Block Diagram

Network Power	
NP Output Voltage	21.1 Vdc min., 26.4 Vdc max.
NP Output Current	4 A max.
NP Output Power	100 VAmax, NEC Class 2

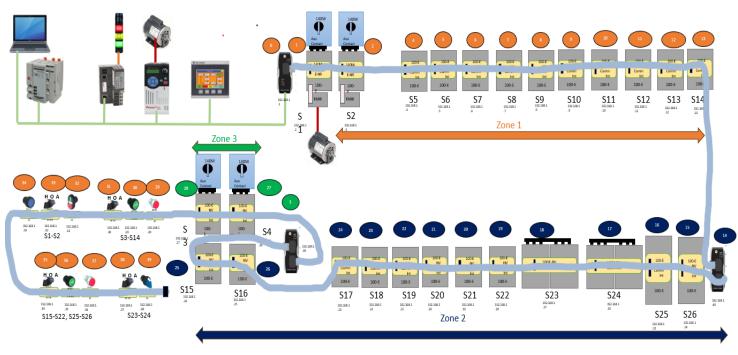

Key Benefits

- 100mA is allowed for end node device, one power tap has enough current for all 40 nodes.
- Allows all end node devices to tap on the same power bus.
- End node devices circuit simplified and require no further protection for shock or fire hazards.

SP Power for Coil Control

Figure 8-10.24 Supplemental Power Tap Block Diagram

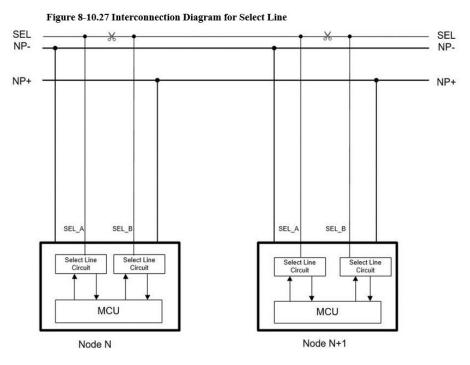
The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP


Switched Power	
SP Output Voltage	21.1 Vdc min., 26.4 Vdc max.
SP Output Current	4 A max. continuous
	8 A max. for up to 100 ms
SP Output Power	100 VA, NEC Class 2 Compliance

Key Benefits

- No additional control power wires for coil control
- Current boost capabilities allow more loads to be turned on at the same time.
- Additional switch power can be made available by supplemental power tap.
- Same 24V DC supply can be used for multiple power taps
- Bank of loads can be powered by the same power tap, allows zone control.
- Planning and installation tool can help users identify how much switch power is needed based on the number of loads.

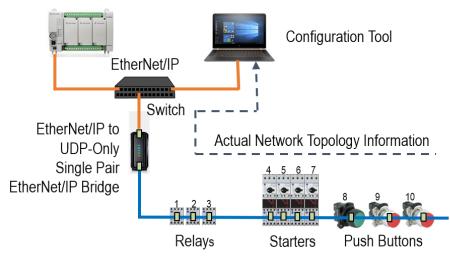
SP Power for Zone Control



- SPE in-cabinet solution with 40 nodes
- Switch power from first power tap/gateway 0 for Zone 1
- Switch power from supplemental power tap node 14 for Zone 2
 - Switch power from supplemental power tap node 3 for Zone 3

Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

Select Line



- A single conductor that runs through In-Cabinet media to facilitate sequential command delivery.
- "Select" line is severed by media connector resulting in "Select A" and "Select B" lines
- On initial power up, the "Select A" and "Select B" pins on all nodes are configured to be input pins
- After a first message is detected on one of the Select pins, the other Select pin is configured to be an output pin
- System wide sequential commands delivered for actual topology discovery, system commissioning and device replacement operations.

Technical Track © 2023 ODVA, Inc.

Select Line Enables Discovery of Actual Topology

UDP-Only Single Pair EtherNet/IP Network Segment

- A "Nodal Topology" is a complete ordered set for all devices on a network.
- In-Cabinet Actual Topology Object works together with the Select Line Link Object and the LLDP Data Table Object to capture the nodal topology for an SPE In-Cabinet network segment.
- Node implements the In-Cabinet Actual Topology Object must be the first (leftmost or rightmost) node on the network segment

Select Line Enables Agnostic Cable Routing Direction

- Select line is bi-directional, cable can be routed from left to right or right to the left.
- Panel builder can minimize cable length, make cable routing neat and clean.
- It makes it easy to track down devices by following the flat cable.
- Panel builders can change panel component layout, re-route the cable and don't have to update ladder logic program.

Technical Track © 2023 ODVA, Inc.

Select Line Enables SPE In-Cabinet Commissioning

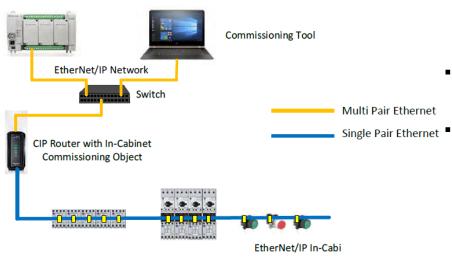
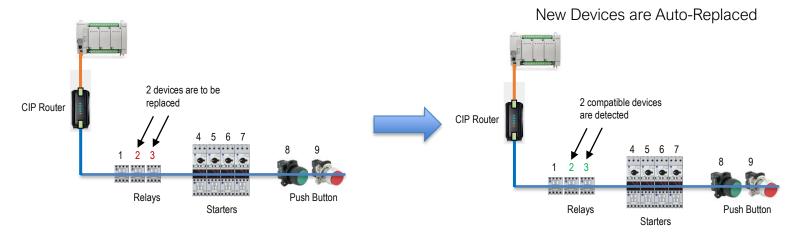


Figure 5-19.1 In-Cabinet Commissioning Object in CIP Router

- In-Cabinet Commissioning Object works with the Select Line Link Object and the In-Cabinet Actual Topology Object to facilitate node commissioning (configuration of T1S PHY settings, and TCP/IP Interface Object) for SPE In-Cabinet network.
 - Node containing the In-Cabinet Commissioning Object must be the first (leftmost or rightmost) node on the SPE network.
 - Various addressing scheme (last octet of IP address) can be implemented

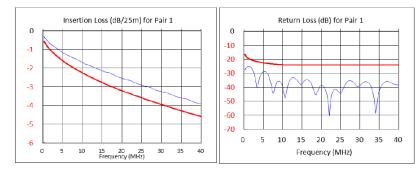
Sequential full: addresses are sequential based on topology location of the devices on the cable.

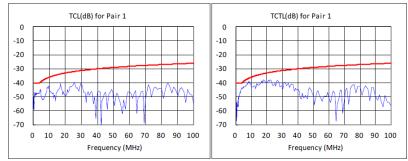

Sequential light: addresses are sequential based on "next available node address" for each newly added device.

Traditional node commissioning: pump is always set at 20.

Technical Track © 2023 ODVA, Inc.

Select Line Enables Auto Device Replacement


- Turn off the 24V DC control power to the system. Remove the cable connection from the SPE end nodes.
- Install the replacement devices from new out-of-the box. Re-apply 24Vdc control power.
- Gateway (CIP Router) will detect the new end node devices and will initiate Discover Topology Service to determine the actual topology.
- When the reference topology and new actual topology match, the Gateway configures the end node with the same IP address.
- Controller sends the configuration parameters to the new devices.
- All IO connections will get re-established.



Cable Conformance

Table 8-10.5 Cable C1 Specifications and Requirements

	Minimum Specifications and Requireme	nts	
Electrical			
Conductors	SPE+, SPE-, SEL: 24 AWG, 7/32 stranded tin (0.23 mm ² (strand 0.203 mm DIA. / bundle 0.0		
	Lay length of outer layer is from 12 min. to 16	max. times outer diameter	
	NP+, NP-, SP+, SP-: 20 AWG, 19/32 stranded (0.61 mm ² (strand 0.203 mm DIA. / bundle 0.9		
	Lay length of all layers is from 12 min. to 16 n	nax. times outer diameter	
Impedance (Ω)	Reference impedance of 100 Ω for SPE pair		
Insertion Loss,	Measured per section 8-10.4.4, for SPE pair, a	t 25 m length	
IL (dB)	0.25 * (2.73 * sqrt(f) + 0.026 * f + 0.375 / sqrt	(f))	
	$0.3 \le f \le 40$ where f is the frequency in MHz		
Return Loss,	Measured per section 8-10.4.4, for SPE pair, a	t 25 m length	
RL (dB)	24 + 5 * log ₁₀ (f/10), 24 max.		
	$0.3 \le f \le 40$ where f is the frequency in MHz		
Mode Conversion,	Measured per section 8-10.4.4, for SPE pair, a	t 25 m length	
MC (dB)	TCL and TCTL: 46 – 10 * log ₁₀ (f), 40 max.		
	$0.3 \le f \le 100$ where f is the frequency in MHz	1	
Current	NP+, NP-, SP+, SP-: 4A minimum at +75 °C a		
	SPE+, SPE-: 12 mA minimum at +75 °C ambi	ent	
DCR	Measured for each conductor, at 25 m length, a	at +20 °C	
	NP and SP: 0.935 Ω max.		
	SPE and SEL: 2.355 Ω max.		
		(Ref: UL 1581)	
DCR Unbalance	Measured per ASTM D4566		
	NP and SP: 3%		
Dielectric Strength	2000 V AC		
		(UL 758, Table 29.1, 600 V AC)	

Data from Actual Cable Sample Measurement

Technical Track © 2023 ODVA, Inc.

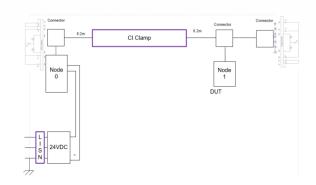
EMC-Conducted Immunity

Setup

- SPE in-cabinet proto cable and connectors.
- SPE Node 0 is the master node.
- SPE Node 1 is the DUT.
- Conducted immunity test per IEC/EN 61000-4-6
- 10V is the Test level required by products.

Acceptance criteria

Criteria A, Equipment should operate normally during and after EMC testing.


Configurations:

(1) 10V with AM on;Master node 0: transmitting nodeDUT Node 1 : receiving nodePage 1

Passed BER no loss of packet.

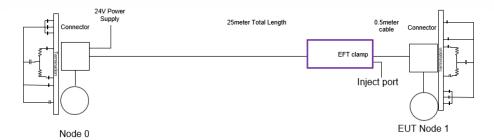
(2) 10V with AM on;Master node 0: receiving nodeDUT Node 1 : transmitting node

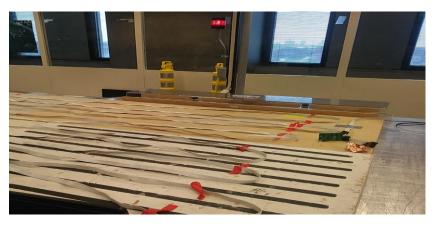
Passed BER no loss of packet.

Conclusion: SPE in-cabinet solution showed good performance during conducted immunity testing.

Technical Track © 2023 ODVA, Inc.

EMC-Fast Transient


Setup


- 25meter SPE-In Cabinet cable and connector protos.
- SPE in-cabinet Node 0 is the transmitting node.
- SPE in-cabinet Node 1 is the DUT and the receiving node.
- Conducted test per IEC/EN 61000-4-4

Acceptance criteria

• Criteria B, temporary degradation or loss of performance which is self-recoverable. PASS

EFT Test Levels	Frames sent by Node 0	Frames received by Node 1	Frames Lost
+500V	65000	64987	13
-500V	65000	64988	12
+1KV	65000	64989	11
-1KV	65000	64985	15
+2KV	65000	64994	6
-2KV	65000	64988	12
+3KV	65000	64998	2
-3KV	65000	64991	9
+4KV	65000	Node 1 LED flashes, unit self recovered back	

Conclusion: SPE in-cabinet solution showed good performance during preliminary EFT testing.

Technical Track © 2023 ODVA, Inc.

SPE In-Cabinet Solution Demo

Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

2023 ODV/A