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Abstract 
 

  

Given the proliferation of cyberattacks it is of paramount importance to ensure that industrial 

equipment has sufficient cyber defensive capabilities. Even devices with low resources are not 

exempt from this, as attackers will target these devices knowing that it is not easy to support 

security capabilities on them. However, with the CIP Security Resource-Constrained Profile, a 

lightweight yet robust implementation of CIP Security is defined for this class of devices. Despite 

this, it may still not be straightforward to add these security capabilities. This paper will provide 

some best practices for applying the CIP Security Resource Constrained Profile to this class of 

devices.  
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Glossary 
 

Term Description 

AES Advanced Encryption Standard. A specification for the encryption of electronic 
data established by the U.S. National Institute of Standards and Technology (NIST) 
in 2001. This block cipher is based on symmetric keys and it is used to encrypt the 
actual data flowing over a TLS or DTLS session. 

Block cipher 
mode of 
operation 

An algorithm that uses a block cipher to provide information security such as 
confidentiality or authenticity. A block cipher (such as AES) by itself is only 
suitable for the secure cryptographic transformation (encryption or decryption) of 
one fixed-length group of bits called a block, while the mode of operation 
describes how to repeatedly apply a cipher's single-block operation to securely 
transform amounts of data larger than a block. 

CA Certificate Authority [1]. An authority trusted by one or more entities to create 
and digitally sign public-key certificates. Optionally the certificate authority may 
create the subjects' keys. 

CBC Cipher block chaining. A block cipher mode of operation for symmetric-key 
cryptographic block ciphers (such as AES). Does not provide data authenticity, for 
that, HMAC can be used in addition. 

Certificate X.509 Certificate [1]. The public key of an entity, together with some other 
information, rendered unforgeable by digital signature with the private key of the 
certificate authority (CA) that issued it. 

ChaCha20 A stream cipher. This stream cipher is based on symmetric keys and it is used to 
encrypt the actual data flowing over a TLS or DTLS session. 

Cipher Suite A cipher suite is a set of cryptographic algorithms used in establishment of and 
communication over a secure connection [2]. A cipher suite specifies one 
algorithm for each of the following tasks: 

• Key exchange 

• Signature 

• Bulk encryption 

• Message authentication 
 
e.g.: 

 
DH Diffie-Hellman. Key-agreement protocol, that allow two parties, each having a 

public-private key pair, to establish a shared secret over an insecure channel. 

DTLS Datagram Transport Layer Security [3]. This protocol allows client/server 
applications to communicate in a way that is designed to prevent eavesdropping, 
tampering, or message forgery. The DTLS protocol is based on the TLS protocol 
and provides equivalent security guarantees. 

EC Elliptic-curve (cryptography). An approach to public-key cryptography based on 
the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys 
compared to RSA cryptography while providing equivalent security.  
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ECC Elliptic-curve cryptography. Same as EC. 

ECDH Elliptic-curve Diffie-Hellman. Same as DH but based on ECC. 

ECDHE Elliptic-curve Diffie-Hellman with Ephemeral key. Same as ECDH but using 
Ephemeral key. 

ECDSA Elliptic-curve Digital Signature Algorithm.  

Ephemeral key A key freshly generated for every key-agreement. This is the basis of the PFS 
feature. Cipher suites are marked with an extra E after the key-agreement 
protocol string, such as ECDH (Elliptic-Curve Diffie-Hellman) vs ECDHE (Elliptic-
Curve Diffie-Hellman with Ephemeral key) 

FS (Perfect) Forward Secrecy. A security property where past negotiated session 
keys are protected even if the associated static private keys are eventually 
compromised. An example of this is: 

• A and B establish a secure session via key agreement with static 
public/private key pairs (usually using certificates) 

• This session encrypts and authenticates the data exchanged using the 
session key 

• The session ends 

• At some future date, A and B have their static private keys compromised, 
which were the keys used to create the secure session key 

• Even though these static keys are compromised, the data sent/received 
during the previous secure session cannot be compromised; this is a due 
to the property of perfect forward secrecy 

In practice there are different way to achieve this security property, but it usually 
has to do with generation of an intermediate ephemeral key pair by each 
communicating party, and then using that to generate the session key 

GCM Galois/Counter Mode. A block cipher mode of operation for symmetric-key 
cryptographic block ciphers (such as AES) which is widely adopted for its 
performance. The GCM algorithm provides both data authenticity (integrity) and 
confidentiality. 

IIoT Industrial Internet of Things [4]. Refers to interconnected sensors, instruments, 
and other devices networked together with computers’ industrial applications, 
including manufacturing and energy management. 

MAC Message authentication code. A short piece of information used for 
authenticating a message. It gives an assurance that the message was not 
modified since the sender sent it. 

PFS  Perfect Forward Secrecy. See FS. 

Poly1305 A hash family. Can be used to produce a MAC. 

PSK Pre-shared key. A key that has been shared securely before any communication 
can happen. In (D)TLS-PSK, these are symmetric keys used for authentication, and 
can be combined with Diffie-Hellman key exchange.  

RNG Random number generator. Often found prefixed by T – True RNG, where the 
randomness is obtained from an entropy source, or P – Pseudo-RNG, where the 
randomness is calculated, usually by software, and needs to be seeded from an 
entropy source. 

RSA Rivest–Shamir–Adleman. An approach to public-key cryptography based on easy 
multiplication but difficult factorization of large prime numbers. 

SHA A hash family. Can be used to produce a MAC. 
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TLS Transport Layer Security protocol [5]. TLS allows client/server applications to 
communicate in a way that is designed to prevent eavesdropping, tampering, and 
message forgery. 

TRISIS Schneider Electric’s Triconex safety instrumented system-targeting malware. 

X.509 Recommendation ITU-T X.509 | ISO/IEC 9594-8 [1]. It defines frameworks for 
public-key infrastructure (PKI) and privilege management infrastructure (PMI). It 
introduces the basic concept of asymmetric cryptographic techniques. It specifies 
the following data types: public-key certificate, attribute certificate, certificate 
revocation list (CRL) and attribute certificate revocation list (ACRL). It also defines 
several certificates and CRL extensions, and it defines directory schema 
information allowing PKI and PMI related data to be stored in a directory. In 
addition, it defines entity types, such as certification authority (CA), attribute 
authority (AA), relying party, privilege verifier, trust broker and trust anchor. It 
specifies the principles for certificate validation, validation path, certificate policy, 
etc. It also includes a specification for authorization validation lists that allow for 
fast validation and restrictions on communications. 
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Introduction 
 

It is well known that cyberattacks are increasing in both frequency and severity. Given the increased 

connectivity of IoT and other devices, attackers are no longer limited to “traditional” targets like servers 

and Internet websites. Examples of devices being attacked are readily available. One of the most famous 

is the Mirai Botnet, which used malware to control many IoT devices such as cameras to launch 

Distributed Denial of Service (DDoS) attacks [6]. Another infamous incident of device hacking occurred 

when security researchers demonstrated that they could take control of a Jeep and cause it to shut off 

the engine or disable braking [7]. Closer to the Industrial Controls space there was a hack of a Schneider 

Electric Triconix Safety Integrated System (SIS) done in 2017 [8].  

Although much could be concluded from these and other examples of cyberattacks against devices, 

there are a few important takeaways to motivate the need for strong security protections at low levels: 

1. Low-end devices will not be overlooked by hackers. Attacks targeting devices like IoT cameras 
shows that attackers are not going to simply overlook a device because it is resource 
constrained. The Mirai Botnet is especially interesting in the sense that the IoT devices were 
commandeered to launch other attacks; even if the device itself is not of great import it can still 
be hacked as a means to another end. 

2. A connected device is a potentially vulnerable attack surface. If a device includes connectivity, 
then it should be considered a potential target for attackers. Although in the case of Mirai the 
devices were connected directly to the Internet, in the case of the Jeep exploit and TRISIS they 
were not. Therefore, just because a device is not directly on the Internet doesn’t mean it won’t 
be a target. 

3. Given the above two, security protections need to be available for resource-constrained 
connected devices. It is important that these devices are able to implement protections, as they 
are clearly targets of attacks. 

 

The rest of this paper will discuss different areas of consideration for applying security to a constrained 

device and highlight best practices. 

 

Multitasking Discussion 
 

When designing low-end communication device firmware, a decision needs to be made on how to 

handle concurrent tasks and events. In computing, there are two categories of computer multitasking – 

preemptive multitasking and non-preemptive (cooperative) multitasking. 

Preemptive multitasking 
In preemptive multitasking, used by most modern operating systems (OS), the task scheduling 

scheme includes preemption. Here preemption means interruption of a currently running task, 

usually by utilizing hardware interrupts and interrupt service routines (ISR) [9]. These routines 

are usually used by an operating system's scheduler, which schedules the highest-priority active 

task to run or/and employs more advanced methods like static and dynamic time-slicing [10]. 



2023 ODVA Industry Conference 6 ©2023 ODVA, Inc 

  

Scheduling a different task means switching task context. Processor flags, and key registers such 

as Program Counter (PC) and Stack Pointer (SP) of the preempted task needs to be saved [9]. 

Then the new task’s context needs to be restored, which is a performance-costly operation as 

context-switches can occur abundantly depending on the scheduler algorithm and its variables. 

In preemptive multitasking, task synchronization needs to be in place by implementing 

synchronization primitives, for example critical sections, mutexes, semaphores, etc. [11] and 

each task needs its own distinct stack, which increases the system’s Random Access Memory 

(RAM) consumption and also impacts performance as tasks need to wait for other tasks using 

the same resource or entering the same critical section. Even though the context switches and 

synchronization are costly, any blocking operations and heavy calculations cannot halt the 

whole system’s runtime as they will be preempted based on the scheduling algorithm. 

Non-preemptive (cooperative) multitasking 
In cooperative multitasking, the task scheduling is simpler. The task decides when it is ready to 

give up control of the processor [12]. Hence, there is no need to perform complex costly context 

switching in terms of RAM and CPU and the scheduler can be as simple as a loop periodically 

firing task routines which yield CPU by a simple return. Apart from synchronizing tasks and ISRs, 

which can preempt running tasks and run temporarily instead of them, no synchronization 

primitives are needed [11] and neither is OS providing them. On the other hand, tasks must 

behave nicely, i.e., not perform blocking or lengthy operations and even one misbehaving task 

can halt the whole system. 

Implications for CIP Security Constrained Profile Devices 
Modern operating systems are designed to run many programs at once and even allow users to 

run what they like. Thus, non-preemptive multitasking is unacceptable for them as any 

misbehaving program could bring the system to a halt. This is, however, not a concern for 

constrained communication device firmware, where programmers have complete control over 

what is running in the system. Due to the nature of stack allocation [13], which can reclaim used 

space for different operations, it is memory-effective to utilize stack allocations as much as 

possible and share one stack for all tasks. As it will be demonstrated in the “Error! Reference 

source not found.” section, this is even more pronounced considering transport layer security 

with RAM-intensive operations. It is hence a best practice to use cooperative multitasking in 

highly constrained devices, for less constrained, single-CPU devices with developers’ full control 

over them, it should be considered as well based on the application and environment. 

 

The Handshake and Connection Memory Footprint 
Handshaking is an important part in network communication, where two counterparts establish a 

connection in between. For connectionless protocols, such as UDP, there can be no handshake involved 

and messages could be exchanged without the counterparts keeping any internal state. This, however, 

changes with DTLS, where encryption context containing shared secrets to encrypt and decrypt 

messages, is needed to be kept on both parts. In a way, this makes DTLS more complex and memory 

consuming than TLS, because TLS can exploit the underlying, already connected, TCP transport, as it will 

be demonstrated in Analysis section. 
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Here is how the handshake process looks like for DTLS v1.2 [3]: 

 

Figure 1: Message flights for a full DTLS v1.2 handshake 

This is how the DTLS v1.2 handshake looks like for IO over DTLS on port 2221/udp. For explicit message 

channel over DTLS on port 44818/udp, as defined in the CIP Security Constrained Profile, this is 

preceded by StartDTLS EtherNet/IP™ messages signifying that a DTLS session follows with the IP address 

and UDP port of the client.  

1. ClientHello. The client sends a list of their TLS version, Cipher Suites alongside client random 
value. 

2. HelloVerifyRequest. The server asks for verification using a cookie to prevent DoS attacks. 
3. ClientHello. The client re-sends the Client Hello with a cookie. 
4. ServerHello. The server picks the best version of TLS and the best Cipher Suite from client’s list, 

if any is applicable and sends server random value. 
5. If this is a ECDHE and PSK-based suite: 

a. ServerKeyExchange. The server sends its DH parameters, including a newly generated 
DH public key, if Ephemeral suites are used. Server sends an opaque, application 
dependent identity hint to the client. PSK is used for authentication and is embedded in 
the pre-master secret. 

b. ServerHelloDone. Indication of the server completing its ServerHello. 
c. ClientKeyExchange. The client sends its DH parameters, including a newly generated 

client public key, if Ephemeral suites are used. It also sends the identity opaque value 
based on the identity hint. 

d. The server and client establish a shared secret and send ChangeCipherSpec. After that, 
the communication is encrypted. 

6. If this is an ECDHE and ECDSA-based suite: 
a. Certificate. The server sends its certificate or certificate chain. 
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b. ServerKeyExchange. The server sends its DH parameters, including a newly generated 
server public key, if Ephemeral suites are used. It also sends a signature of previous 
messages authenticated by the private key that belongs to the server Certificate. 

c. CertificateRequest. If the server choses to verify the client, who then must send its 
Certificate and the CertificateVerify message. 

d. ServerHelloDone. Indication of the server completing its ServerHello. 
e. If the server requested client certificate authentication, Certificate is sent from the 

client. 
f. ClientKeyExchange. The client sends its DH parameters, including a newly generated 

public key, if Ephemeral suites are used. If certificate authentication was requested, it 
also sends a signature of previous messages authenticated by the private key that 
belongs to the client. 

g. The server and client establish a shared secret and send ChangeCipherSpec. After that, 
the communication is encrypted. 

7. Finish. Signifies completion of the handshake and it is encrypted by the symmetric shared key. 
 

Analysis 
To provide basis for following claims, a testware application has been developed and published on 

github [14] and was used to check memory consumption (stack, heap) and performance profiling. This 

testware application used two common TLS libraries, wolfSSL [15] and mbedTLS [16] to make more 

general statements applicable to multiple practical applications. The test application tested the Server 

and Client side of the communication for TLSv1.2 and DTLSv1.2 using multiple cipher suites with various 

properties. Only one certificate has been set for a device and another for CA, which directly signed it. 

Thus, no certificate chain was used, which could potentially render ECC-based cipher suites more 

efficient. 

The most memory intensive part of the (D)TLS communication is undoubtedly the handshake, as can be 

seen from the difference between “Heap” Column meaning handshake peak memory and “Heap 1 

Conn” column in Table 1: Embedded TLS Libraries Handshake and Connection Heap and Stack 

Consumption in bytes, marking remaining allocated size for connection context extended of the memory 

needed to transmit or receive a simple 11-byte-long “Hello world” message. 

The largest memory footprint can be seen when Elliptic-Curve Diffie-Hellman with Ephemeral EC keypair 

generation is used. Contrary to popular belief, Elliptic-Curve-based Cipher Suites can consume more 

memory during handshakes than RSA-based Cipher Suites even though their keys are smaller in size. 

This is especially true for the client side. On the server side, both TLS libraries consume similar amounts 

of memory and the difference is not so decisive. 

DTLS is also more memory consuming than TLS in general for handshakes but also for keeping one 

connection alive, which is more pronounced on the server side. This is likely caused by the DTLS having 

to decrypt the packet as a whole and serve it to the user’s provided buffer at once as it is customary in 

the Berkley socket API. For example, WolfSSL is allocating the full size of user-specified receive buffer 

enhanced for padding and DTLS record headers for packet reception. This is offset by DTLS not needing a 

reliable stream protocol underneath, where the management of the session is the responsibility of the 

TCP/IP stack and the memory consumption can then be visible there. 
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Going for ECC and DTLS may thus not be the easy path for Constrained security, and it may require 

significant tweaks in the (D)TLS library compilation options. 

Further memory savings by using PSK as opposed to ECC certificates are negligible (but can grow in 

importance when certificate chains are being sent), although for some reason mbedTLS had significant 

memory savings with PSK over ECC on the client side. Using PSK has significant memory benefits over 

RSA certificates with large keys. 

ChaCha20-Poly1305 seems to be best suited for constrained purposes. With its post-handshake heap 

usage per 1 connection only NULL-SHA256 cipher suites is comparable (which provides no 

confidentiality). 

Handshake operations are also stack intensive. If the client and server side run in two separate threads, 

in some configurations the RAM consumption can grow up to 20K just for parallel stacks of a multi-

threaded design but staying at 10K for Single-Threaded. To lower stack consumption, it appears this 

mbedTLS configuration was better suitable, but the vast amounts of memory were spent on heap, 

rendering the actual RAM savings negative for one connection. 

  



2023 ODVA Industry Conference 10 ©2023 ODVA, Inc 

  

 

 
Method Cipher Suite wolfSSL mbedTLS 

Stack  Heap1 Heap 1 
Conn 

Stack Heap2 Heap 1 
Conn 

TLS Client ECDHE-ECDSA-AES128-CBC-SHA256 10488 8452 3280 9896 37838 5282 

TLS Client ECDHE-PSK-AES128-CBC-SHA256 10488 8452 3280 7928 33621 2994 

TLS Client DHE-RSA-AES256-SHA256 10136 5147 3280 8520 38432 6943 

TLS Client DHE-PSK-AES128-CBC-SHA256 10136 4015 3280 7256 34395 2994 

TLS Client ECDHE-ECDSA-AES128-GCM-SHA256 10488 8452 3330 9896 37846 5658 

TLS Client ECDHE-PSK-NULL-SHA256 10488 8452 1424 7928 33045 2418 

TLS Client ECDHE-PSK-CHACHA20-POLY1305 10488 8452 1816 7928 33053 2426 

DTLS Client ECDHE-ECDSA-AES128-CBC-SHA256 10488 9150 5434 9896 37786 5282 

DTLS Client ECDHE-PSK-AES128-CBC-SHA256 10488 8468 5434 7928 33560 2994 

DTLS Client DHE-RSA-AES256-SHA256 10136 5959 5947 8520 38344 6943 

DTLS Client DHE-PSK-AES128-CBC-SHA256 10136 4415 5947 7256 34159 2994 

DTLS Client ECDHE-ECDSA-AES128-GCM-SHA256 10488 9150 5484 9896 37794 5658 

DTLS Client ECDHE-PSK-NULL-SHA256 10488 8468 3738 7928 32984 2418 

DTLS Client ECDHE-PSK-CHACHA20-POLY1305 10488 8468 3970 7928 32992 2426 

TLS Server ECDHE-ECDSA-AES128-CBC-SHA256 9736 8066 3296 4968 33480 2994 

TLS Server ECDHE-PSK-AES128-CBC-SHA256 9560 8133 3296 3800 33375 2994 

TLS Server DHE-RSA-AES256-SHA256 9176 8524 3296 3688 37147 4810 

TLS Server DHE-PSK-AES128-CBC-SHA256 9176 3272 3296 3272 33875 2994 

TLS Server ECDHE-ECDSA-AES128-GCM-SHA256 9560 8067 3346 4968 33751 3370 

TLS Server ECDHE-PSK-NULL-SHA256 9560 8133 1440 3800 32799 2418 

TLS Server ECDHE-PSK-CHACHA20-POLY1305 9560 8133 1832 3800 32807 2426 

DTLS Server ECDHE-ECDSA-AES128-CBC-SHA256 9560 10608 8814 4968 34154 6113 

DTLS Server ECDHE-PSK-AES128-CBC-SHA256 9560 9888 8814 3800 33416 6113 

DTLS Server DHE-RSA-AES256-SHA256 9176 10711 6150 3688 38119 9743 

DTLS Server DHE-PSK-AES128-CBC-SHA256 9176 5004 6150 3272 34113 7927 

DTLS Server ECDHE-ECDSA-AES128-GCM-SHA256 9560 10605 8864 4968 34528 6489 

DTLS Server ECDHE-PSK-NULL-SHA256 9560 9884 7118 3800 32836 5537 

DTLS Server ECDHE-PSK-CHACHA20-POLY1305 9560 9884 7350 3800 32844 5545 

Table 1: Embedded TLS Libraries Handshake and Connection Heap and Stack Consumption in bytes 

  

 
1 During receive operation, wolfSSL dynamically allocates a buffer for incoming encrypted UDP packet, thus these 
measured values contain additional 1500+ bytes on DTLS server side. For every receive call, the user will need to 
have two times the buffer, one for decrypted (user-allocated) and one for encrypted (wolfssl-allocated) data. 
2 Per mbedTLS configuration file documentation, mbedTLS allocates 32768 bytes (maximum 16384 bytes per [5] 
for both sides) for a handshake as a reasonable maximum. This is included in the measured values. 
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Performance Considerations for Handshakes 
 

The handshake operation is also performance intensive. Here, handshake operation refers to the 

authentication and key agreement performed at the start of a DTLS session. This involves several 

asymmetric cryptography calculations as well as the generation of random data, which are both fairly 

processor intensive operations. In selected suites, where PFS needs to be assured, ephemeral versions 

of Diffie-Hellman key exchange and Elliptic-Curve Diffie-Hellman key exchange are used. Profiling on the 

memory analysis testware showed, that generating a new DH key-pair can be a very slow operation 

(e.g., on constrained, single-core devices up to 100MHz CPU clock rate without hardware acceleration, it 

can take seconds) and it takes similar time to sign and verify in the ECDSA authentication phase. Hashing 

is also a very time-consuming operation happening throughout the communication, but profiling did not 

draw it as a significant handshake performance bottleneck. If possible, it is beneficial to offload key 

generation RNG and Sign & Verify operations to the hardware or to use asynchronous operations. This 

allows for other communication channels, such as CIP I/O, to run without significant impact. In a wolfSSL 

analysis [17], various crypto operations, such as RNG, SHA and SHA256 but even ECC key generation, 

ECDHE and ECDSA [18] could be sped up by several (usually one or two) orders of magnitude. Time 

consuming handshakes are even more pronounced when the device uses a Single-Threaded approach, 

since during the calculation nothing else can run. Pre-calculating Ephemeral keys in advance and using 

them when a handshake is requested is also a potential mitigation to consider. These methods can be 

combined to provide even smoother operation, so pre-calculating ephemeral keys, using PSK instead of 

ECDSA, offloading SHA256 and AES operations to hardware and using asynchronous operations in 

Single-Threaded environment may be the correct path forward in Constrained environments. 

 

 

Memory Savings 
 

The CIP Security Resource Constrained Profile deliberately removed components of the other profiles 

that took up significant memory but are not strictly necessary for a secure protocol. The most significant 

component is the support for provisioned certificates. The EtherNet/IP Confidentiality Profile supports 

provisioning of a user-signed certificate, as well as the provisioning of multiple Certificate Authority (CA) 

or End-Entity (EE) certificates. This implies support for the following components: 

• File Object 

• Certificate Management Object 

• X.509 Parsing Code 

• Certificate-based Cipher Suites 
 

However, removing support for these results in significant memory savings. Although exact values will 

vary greatly from one platform and implementation to another, it can be instructive to view some 

concrete numbers. As an example, one can compare two Rockwell Automation proprietary 

implementations, one with the EtherNet/IP Confidentiality Profile, the other with the CIP Security 
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Resource Constrained Profile. Of course, the former implemented the full EtherNet/IP Profile, and the 

latter the Constrained EtherNet/IP Profile. The constrained implementation reduced the build footprint 

by over 50%. Not all of this came from the differences in CIP Security profile, some was the base 

EtherNet/IP as well. However, this provides quite significant savings in terms of footprint. Note here the 

build footprint refers to code size, read-only memory (constants), and read-write memory (global/static 

variables). 

File Object 
CIP Security uses the CIP File Object to store any certificate, whether it is the device’s identity certificate, 

an additional trusted CA certificate, or an additional trusted EE certificate. This is a reasonable decision 

as the File Object is a generic mechanism for storing files used in CIP, and certificates are files. However, 

with this generic mechanism comes the complexity of additional objects and services which can be 

removed if certificates are not supported. On an existing sample implementation the File Object 

resulted in about 2 Kilobytes of footprint, which can be a significant amount of savings within a resource 

constrained environment.  

Certificate Management Object 
The Certificate Management Object is a CIP object defined to allow for common configuration and 

management of a certificate. For CIP Security, it is used to manage a device’s identity certificate, as well 

as trust for the Certificate Authority that has signed the device’s identity certificate. However, to this 

end, multiple attributes and services are included. On an existing sample implementation the Certificate 

Management Object contributed around 300 bytes of footprint. Although not as significant as the File 

Object, this still is measurable savings in resource usage. 

X.509 Parsing Code 
Supporting certificates means supporting the ability to parse the X.509 data encoded within the 

certificate. X.509 certificates can include complex data types and custom extensions, which even if not 

used by a device would still need to be parsed. Then there are some extensions which are required for 

device usage like Subject Alternative Name. Much has been written about the complexity of X.509 

certificates and the associated parsing needed [19] [20]. As such, including support for X.509 parsing 

adds significant complexity, as well as memory usage. Exact values for memory usage are not easy to 

determine as this code is often bound up in the (D)TLS library used. However, even a cursory review of 

open source (D)TLS libraries can show that X.509 support code is quite significant.  Removing support for 

parsing certificates results in significant savings on memory. 

Certificate-Based Cipher Suites 
The Constrained CIP Security Profile removes support for any certificate-based cipher suites, except in 

the Factory Default state, in which case only one cipher suite is supported. Instead it makes use of PSK-

based cipher suites. There are only 3 PSK suites required for the CIP Security Resource Constrained 

Profile: 

• TLS_ECDHE_PSK_WITH_NULL_SHA256 

• TLS_ECDHE_PSK_WITH_AES_128_GCM_SHA256 

• TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 
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The choice of these ciphers was deliberate. ChaCha20-Poly1305 is particularly well-suited to constrained 

environments that do not have hardware accelerators. AES GCM is very efficient when a hardware 

accelerator is present [21]. The non-encrypted algorithm provides a lightweight option where the data is 

not encrypted and only uses SHA-256 to authenticate. 

Note that one important decision regarding these cipher suites was to include cipher suites that provide 

perfect forward secrecy. All of these ciphers are Elliptic Curve Diffie Hellman ciphers, which include an 

ephemeral Elliptic Curve key generated during the handshake. This results in more memory usage during 

the handshake, as well as more code size. However, it was thought that this is a worthwhile tradeoff, as 

it provides good information assurance benefits against compromise of the PSK [22]. However, if code 

size becomes too much of an issue for constrained EtherNet/IP products, it remains an option to allow 

for even lighter-weight ciphers that do not provide perfect forward secrecy. However, note that TLS 1.3 

and DTLS 1.3 is meant for ciphers which support perfect forward secrecy. That is, a PSK without an 

Ephemeral Diffie Hellman key can be used in TLS 1.3, although the expectation is that this is used for 

session resumption, to then be followed by a certificate exchange. To use TLS 1.3 without PFS would be 

to use a PSK without an Ephemeral Diffie Hellman key, which may be technically feasible but is not the 

documented/intended use. Although CIP Security is currently standardized on TLS 1.2 and DTLS 1.2, it 

will move to supporting TLS 1.3 and DTLS 1.3 in the near future. 

Security Implications 
 

Removing support for certificates does provide significant savings in terms of memory usage and 

complexity. However, there is of course a trade-off to these savings. From an information assurance 

standpoint, certificates provide a unique identity for each communicating party in a given group. Of 

course, this is only true if certificates are used for bi-directional authentication, support of which is 

required in CIP Security. However, PSKs do not provide this same assurance; rather a PSK is often shared 

amongst a group. If more than two parties share a given PSK then there is no assurance at the TLS layer 

that can distinguish one party from another, which has an impact on non-repudiation and spoofing 

security properties. However, for small-scale systems this is often a reasonable trade-off. Furthermore, 

some PSK uses may be vulnerable to reflection attacks of the type described in [23]. Regardless, Threat 

Modeling of a given system is necessary to understand the information assurance properties provided 

by the CIP Security Resource Constrained Profile. A given system may require further mitigations or 

compensating countermeasures to achieve a desired security posture. 

Although user-generated certificates are not supported in the CIP Security Resource Constrained Profile, 

this profile does support an initial certificate. This has the benefit of allowing authentic and confidential 

deployment of security credentials like PSKs when a device is in the factory default state. Furthermore, 

assuming the initial certificate used is an IEEE 802.1AR IDevID, which is the recommended 

implementation, this can also provide identity and authenticity assurances of the device in question. 

Even though the device has a unique certificate, it still does not need to parse certificate data. That is, 

when the initial connection is made, the device simply “serves” the certificate in the (D)TLS handshake; 

it does not request a client certificate. Also, because this certificate is not dynamic there is no need to 

implement the File Object or Certificate Management Object. Therefore this certificate has very little 
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memory impact, although maintaining it on a device provides significant benefit to the initial 

commissioning and device authenticity. 

 

Conclusions 
 

The CIP Security Resource Constrained Profile provides robust cyber security assurances scaled down to 

devices which cannot feasibly implement the other CIP Security profiles. However, this does not come 

without trade-offs. Using PSKs instead of certificates provides significant savings on code complexity and 

memory usage, although some of the information assurances change. PSKs do not provide the same 

level of non-repudiation, or of spoofing by already trusted endpoints as certificates. Depending on the 

threat model for a given product or system these trade-offs may be acceptable, and in some cases even 

negligible. However it is important to be aware of this and to spend the appropriate time and effort 

documenting risks and responding to them. 

Although the CIP Security Resource Constrained Profile provides significant savings in terms of resources 

required to implement it, there are still important considerations for product vendors. One of the 

biggest areas is around the tasking architecture of the platform. Whether multi-tasking is used and what 

scheme is chosen can have significant impact on the performance of security within a constrained 

device. Vendors should consider non-preemptive multitasking as it is particularly well-suited to a 

constrained environment device supporting DTLS communication. Furthermore, it is recommended to 

preference stack allocations for memory usage in a constrained environment, as the stack memory may 

be easily reclaimed for other uses once it is no longer needed for security intensive operations like DTLS 

handshakes. It is very important to be mindful of the DTLS handshake and how that will be processed, 

especially if multiple handshakes can occur at a time, since this is likely to be the most resource 

intensive operation related to CIP Security in a constrained environment. 

The CIP Security Resource-Constrained Profile currently mandates cipher suites which provide perfect 

forward secrecy, which is an important security attribute and is standardized in TLS 1.3. However, this 

comes at some non-trivial memory usage and performance cost. If in practice this is shown to be too 

burdensome to highly constrained devices then the SIG will need to consider providing support for 

cipher suites which do not provide Perfect Forward Secrecy (e.g. cipher suites with PSKs that do not use 

Ephemeral Diffie Hellman keys). This is an important area for the SIG to monitor and react to as product 

developers begin to implement the CIP Security Resource-Constrained Profile. 
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