
2023 ODVA Industry Conference 1 ©2023 ODVA, Inc.

Enabling Data Scientist Use Cases with
Discoverability and Metadata

Greg Majcher

Principal Application Engineer
Rockwell Automation

Presented at the ODVA

2023 Industry Conference & 22nd Annual Meeting
October 18, 2023
El Vendrell, Spain

Abstract

Data science uses statistics and algorithms to extract or extrapolate knowledge and insights from noisy,
structured, and unstructured data. Data scientists often don’t know what they are looking for until they see
patterns or associations. For this reason, all data can be valuable in analyzing and optimizing a process
or system.

Many CIP-enabled devices possess a rich collection of data that never gets used in a user’s control
program. Furthermore, some of that data is buried in the device and not readily exposed. The CIP
specifications provide some mechanisms to make that data discoverable, but more could be defined.
This paper explores options using currently specified techniques as well as some new proposals for
making device data more discoverable and understandable thereby enabling its use in data scientist use
cases.

Keywords

Data, Data Scientist, Discoverability, Metadata, Vertical Communication, Data Acquisition

Definition of terms

CIP: Common Industrial Protocol defined in [1]
Data Scientist: IT professional that uses data to understand and solve problems
ListIdentity: Command used by clients to locate and identify potential CIP communication targets
LLDP: Link Layer Discovery Protocol defined in [4]
Metadata: Data that provides information about other data

2023 ODVA Industry Conference 2 ©2023 ODVA, Inc.

Introduction
Data scientists use data to answer questions, make predictions, and solve problems. They collect, clean,
organize, and analyze data before drawing their conclusions. But what data are they looking for? It depends.

First the data scientist must understand the problem space. Some industrial possibilities are:

• Identify areas for energy savings.
• Predict when a component will fail.
• Increase the efficiency of a process.
• Identify deteriorating quality in a process or a product being produced.
• Diagnose performance or quality differences between similar production lines or facilities.

In some of these cases it would be easy to identify the data needed. In others, the selection of data is
less clear. Let’s look at a few use cases from above.

User Story: As a plant manager, I want to identify opportunities for energy savings.

The data scientist could start by collecting the power consumption of all products in a plant and ranking
them by their power usage. Studying when and how the highest consumers are used could yield energy
saving ideas. In this case identifying the needed data is straightforward, but it does rely on knowing
where that data is located and how to retrieve it.

User Story: As a plant manager, I want to predict when equipment will fail so that I can proactively
schedule maintenance downtime to replace it.

Data scientists can collect data directly related to a component’s usage such as hours of operation or a
cycle count related to movement. If devices provide predicted lifetimes, they can be used to compare
against the actual usage. However, predicted lifetime data might be based on idealized environmental
conditions. The actual environment may be accelerating wear. Data that reflects the surrounding
temperature or humidity might be of interest. The turbidity or viscosity of any fluids involved may be
important. Discovering these data items will require some investigation and knowledge of the application.
Additionally, this use case may also require taking baseline measurements (e.g., vibration monitoring
measurements or power consumption) and then tracking changes over time.

User Story: As a regional production manager, I want to understand performance and quality differences
between two similar plants.

Depending on how well the production facilities and processes are understood, it may or may not be clear
what data to use in this case. The data scientist may need to collect a large sample of many different
sources of data and simply look for differences. The differences between the data from the facilities may
point to areas for further investigation. The plants being compared in this example could be using
equipment from different vendors or even different network technologies. To compare the data correctly,
the data scientist would need to know that the data collected from the differing equipment was equivalent.

User Story: As a plant manager, I want to detect deteriorating production quality and identify the cause
early so that remediation can occur with minimal product loss.

To diagnose decreasing quality, data scientists may need to collect a lot of random, unrelated data over a
period of time and look for associations and trends in the historical data. Because the associations are
unknown, the data scientist may be looking for any kind of data available. The ability to browse devices
in order to see all the data they have available would be very helpful in this case.

The examples above are intended to highlight problem scope ranging from well-defined to highly
unstructured. In each case, the data needed, and the steps taken to collect it might be different.
Industrial automation products have data that is intended to be exchanged in real time connections with a
PLC or DCS. Many products also have additional data available that never gets used in a control program.
Things like diagnostics, statistical counters, event logs, and status variables are collected by field devices and

2023 ODVA Industry Conference 3 ©2023 ODVA, Inc.

are waiting to be used. It is likely that some of this data will be of high value to a data scientist. To better
enable data scientists, data needs to be discovered, understood, and delivered in an efficient manner.

Products should efficiently expose the data they possess. Exposed data should be presented along with
meaningful metadata, so the meaning of the data is understood. Finally, data should be made available
using transport mechanisms that are efficient for the type, amount, or frequency of data. The CIP
specifications already define some techniques to present, define, and transport data. The rest of this
paper will document some of those along with proposals for how we can do better.

Discovery

Discovering Devices
Devices can easily be found on an ethernet network. The EtherNet/IP Adaptation of CIP (Volume 2 of the
CIP Networks Library) recently mandated support for the Link Layer Discovery Protocol (LLDP) in all
products. Devices supporting LLDP advertise information to stations attached to the same LAN for the
purpose of populating a physical topology. Identifying information (i.e., a device’s CIP identity) is returned
in responses.

Volume 2 also defines the ListIdentity command sent using an Encapsulation packet over TCP or UDP.
Responses to this message include data from all the required attributes of the Identity object as well as
the current state of the device. Clients can send this message as a broadcast and quickly discover all
EtherNet/IP devices on a network.

The combination of these two mechanisms provides for an effective way to construct a topology tree and
identify all the EtherNet/IP devices. The discovery process could be improved if clients were able to
discover important capabilities or features that were supported by devices. Volume 8 contains one
example of this. Devices that support CIP Security are required to include their supported CIP Security
Profiles in response to the ListIdentity request. This same mechanism could be used to indicate support
for other important capabilities.

Discovering Data Online
To request data from a CIP-based product, you must construct a path to that data. Paths are addressed
to objects. They can be directed to the object class, or to a specific instance of the object. Attributes of
the class or individual instances represent the data.

If nothing was known about a product, you may be tempted to use a brute force technique for discovery,
sending many requests to discover what a product had to offer. The first step would be to send a request
to every possible class code (65,535 possible) to see which classes were supported. For any objects that
responded, you would then need to discover the instances (4,294,967,295 possible) of that object that
existed. Finally, for each instance you could send a request to every possible attribute id (65,535
possible). As you can see, this technique would result in trillions of requests and take too long to be
useful.

The good news is that several techniques already exist to limit the number of messages needed to
perform this type of discovery. The bad news is that most products do not support this functionality
because it has always been optional.

The Message Router Object has an instance attribute (Attribute 1) that enumerates all the supported
objects in an implementation. If this attribute is supported, a client can avoid the brute force method of
discovering the supported objects.

2023 ODVA Industry Conference 4 ©2023 ODVA, Inc.

Table 1 - Message Router's Object List Attribute

Number Need in
implementation

Access
Rule

Name Data
Type

Description of
Attribute

Semantics of Values

1 Optional Get Object_list STRUCT
of

A list of supported
objects

Structure with an array of
object class codes
supported by the device

Number UINT Number of
supported classes in
the classes array

The number of class codes
in the classes array

Classes ARRAY
of UINT

List of supported
class codes

The class codes supported
by the device

This attribute provides a very efficient response indicating all the objects contained in a device. The next
step would be to discover the instances of each object class.

Volume 1, Chapter 4 of the CIP Networks Library documents the CIP Object Model. As part of that model
some Class Attributes are defined as common to all CIP objects. Attributes 2 and 3 help you to discover
which instances are currently created in an object. Attributes 200 and 201 are used if a device supports
instances greater than 65,535.

Table 2 - Reserved Class Attributes 2, 3, 200, and 201

Number Need in
implementation

Access
Rule

Name Data
Type

Description of
Attribute

Semantics of Values

2 Conditional2 Get Max Instance UINT Maximum instance
number of an object
currently created in
this class level of the
device.

The largest instance
number of a created
object at this class
hierarchy level.

3 Conditional2 Get Number of
Instances

UINT Number of object
instances currently
created at this class
level of the device.

The number of object
instances at this class
hierarchy level.

200 Conditional2 Get Max Instance UDINT Maximum instance
number of an object
currently created in
this class level of the
device.

The largest instance
number of a created
object at this class
hierarchy level.

201 Conditional2 Get Number of
Instances

UDINT Number of object
instances currently
created at this class
level of the device.

The number of object
instances at this class
hierarchy level.

Table Footnotes:
2. These attributes are optional. If the device chooses to implement either Max Instance or Number of Instances attribute,

it shall implement the UDINT version if it supports instances greater than 65.535, else it shall implement the UINT
version.

These attributes would be all you needed if the value of Max Instance equaled the Number of Instances.
However, if the two do not match, you must try all the instances between 1 and Max Instance to discover
the instances that the device currently has instantiated. There are no rules about which instances can be
created. In a worst-case scenario, a device may have created instances from the top of the range and
worked down or has some dynamic instantiation method that results in a sparsely populated list.

A better solution might be to provide an attribute similar to the Message Router’s Object_List that would
return an array of the instances that currently exist.

2023 ODVA Industry Conference 5 ©2023 ODVA, Inc.

Table 3 - Proposed Instance List Attribute

Number Need in
implementation

Access
Rule

Name Data
Type

Description of
Attribute

Semantics of Values

N Optional Get Instance_list STRUCT
of

A list of created
instances

Structure with an array of
currently created instances
of this object class

Number UINT Number of instances
in the Instances
array

The number of instances in
the Instances array

Instance
Data Type

UINT The data type of
members in the
instances array

0 = USINT
1 = UINT
2 = UDINT

Instances ARRAY
of
Instance
Data Type

List of currently
created instances

The instances that currently
exist in this object class

This attribute would be efficient for most devices. For implementations where the presence of many
instances would not allow the response to fit in one packet, CIP provides the Find_Next_Object_Instance
service. This service is directed to a class specifying an instance to start with and a maximum number of
return values. The class will return a list of existing instances starting with the next instance greater than
what was passed in. Returning 0 indicates that the end of the list of created instances has been found.
The example in Figure 1 shows a collection of sparsely created instances returned in only two
exchanges.

Figure 1 - Example of Find_Next_Object_Instance Service

Class A

Instance
16

Instance
32

Instance
64

Instance
128

Instance
1

Instance
2

Instance
4
Instance

8

Find_Next_Object_Instance Request
Class A, Instance 0, Max Return Values = 5

Find_Next_Object_Instance Response
[1,2,4,8,16]

Find_Next_Object_Instance Request
Class A, Instance 16, Max Return Values = 5

Find_Next_Object_Instance Response
[32,64,128,0]

This service works very well if the implementation does not support instances greater than 65,535. The
Find_Next_Object_Instance service was defined before CIP was extended beyond UINT instances. To
find UDINT instances, the client would need to use the existing attributes along with the brute force
method. Alternatively, the service could be redefined (or a new service could be developed) that
supported UDINT instance numbers.

Once the objects and their instances are discovered, finding the supported attributes can be performed.
The CIP Object Model currently has the following Class attributes defined to help with this process.

2023 ODVA Industry Conference 6 ©2023 ODVA, Inc.

Table 4 - Reserved Class Attributes 4, 6, and 7

Number Need in
implementation

Access
Rule

Name Data
Type

Description of
Attribute

Semantics of Values

4 Optional Get Optional
attribute list

STRUCT
of

List of optional
instance attributes
utilized in an object
class implementation.

A list of attribute
numbers specifying
the optional attributes
implemented in the
device for this class.

number of
attributes

UINT Number of attributes
in the optional
attribute list.

The number of
attribute numbers in
the list.

optional
attributes

ARRAY
of UINT

List of optional
attribute numbers.

The optional attribute
numbers.

6 Optional Get Maximum ID
Number Class
Attributes

UINT The attribute ID
number of the last
class attribute of the
class definition
implemented in the
device.

7 Optional Get Maximum ID
Number
Instance
Attributes

UINT The attribute ID
number of the last
instance attribute of
the class definition
implemented in the
device.

If the client has knowledge of the Class definition, attribute 4 can be helpful. If the Class definition is
vendor specific, or the client is not CIP-aware, attribute 4 is of no value. Attributes 6 and 7 are of some
use, however just like with the Max Instance attribute, the value is diminished when large numbers of
attributes exist. Therefore, new class attributes that simply return a list of all supported attributes make
the most sense.

Table 5 - Proposed Attribute List Attributes

Number Need in
implementation

Access
Rule

Name Data
Type

Description of
Attribute

Semantics of Values

N Optional Get Class Attribute list STRUCT
of

A list of supported
Class attributes

Structure with an array
of supported Class
attributes

Number UINT Number of
attributes in the
Attributes array

The number of
attributes in the
Attributes array

Attribute Data
Type

UINT The data type of
members in the
Attributes array

0 = USINT
1 = UINT
2 = UDINT

Attributes ARRAY
of
Attribute
Data
Type

List of supported
attributes

The Class attributes
that are supported in
this object class

N Optional Get Instance Attribute
list

STRUCT
of

A list of supported
Instance attributes

Structure with an array
of supported Instance
attributes

 Number UINT Number of
attributes in the
Attributes array

The number of
attributes in the
Attributes array

 Attribute Data
Type

UINT The data type of
members in the
Attributes array

0 = USINT
1 = UINT
2 = UDINT

2023 ODVA Industry Conference 7 ©2023 ODVA, Inc.

 Attributes ARRAY
of
Attribute
Data
Type

List of supported
attributes

The Instance attributes
that are supported in
this object class

For implementations where many attributes are supported and the response would not fit in one packet,
the existing attributes (4, 6, and 7) could be used along with the brute force method, or a new service
could be developed. We could specify a Find_Next_Object_Attribute service patterned after the
Find_Next_Object_Instance service.

Discovering Data Offline
There are always arguments against introducing more required functionality which would negatively
impact constrained devices, or because some devices are already very complicated. To respond to these
objections, much of the discovery information could be exposed using offline device description files (e.g.,
EDS).

The Public Object Class and Vendor Specific Object Class sections of the EDS define a way to expose a
product’s supported objects, instances, and attributes. An example is shown below for the Discrete Input
Point object.

[Discrete Input Class]
 Revision = 2; $ Revision 2 of the object is implemented
 MaxInst = 8; $ The highest instance number that exists in the product is 8
 Number_Of_Static_Instances = 8; $ There are 8 static instances present
 Number_Of_Dynamic_Instances = 0; $ There are no dynamic instances
 Class_Attributes = 1; $ Class attribute 1 is supported
 Instance_Attributes = 3, 4, 5, 6; $ Instance attributes 3, 4, 5, and 6 are supported
 Class_Services = 0x14; $ Get_Attribute_Single is supported for class attributes
 Instance_Services = 0x14, 0x10; $ Get_ and Set_Attribute_Single are supported for instance attributes
 Object_Name = “Discrete Input Point Object”
 Object_Class_Code = 0x08;

As you can see, it would be possible to fully describe the objects in a device’s implementation using these
EDS keywords. Provisions were also made to describe vendor specific objects in the same way. The only
thing that would need to be discovered online would be any dynamically created instances of an object.
This is an example of a powerful EDS feature that can be used to enable the discoverability and
understandability of device data.

Understanding Data Online
CIP’s information model (metadata) is documented in its object definitions. For publicly defined objects
an ODVA member can know the details of any object from the CIP specifications. However, vendors are
free to extend publicly defined objects or even create their own. Those vendor specific additions would
not generally be known to other vendors. And non-member actors, specifically end users, have no
access to the CIP specifications. This can make it challenging for a data scientist to have the context of
the available data.

Currently there is no online mechanism to communicate a CIP object’s metadata. The Parameter Object
comes close, but it was written for configuration parameters. The object allows for “Stub” or “Full”
definition of parameters. Stub parameters fall short of what is needed for the data scientist, and full
parameters might be too heavyweight for many products. A simple and efficient mechanism could be
introduced to access object metadata by extending our use of logical segments for paths.

CIP uses encoded items, called segments, to reference or describe elements within a device’s
information model. Those segments can be used to specify a path indicating relationships among

2023 ODVA Industry Conference 8 ©2023 ODVA, Inc.

different objects. For our purposes we will be talking about paths of logical segments. These are
commonly used to reference an object, its instances, or an instance’s attributes. A new logical segment
could be defined to provide object metadata.

The CIP object model presents class and instance attribute data using tables as shown below. Each of
the eight columns specifies some property of the attribute. You could say an attribute of the attribute, but
that might get clumsy. These eight columns are essentially the metadata properties for the attributes.

Table 6 - Attribute Properties

Attribute
ID

Need in
Implementation

Access
Rule

NV Name Data Type Description of
Attribute

Semantics of
Values

1 2 3 4 5 6 7 8

Columns 2-7 could be standardized metadata properties for all attributes. In other words, the name of
any attribute could be addressed by referring to property 5 of that attribute or the data type as property 6.

A new Extended Logical segment (0x3C) could be defined to represent these new metadata properties.
See the CIP Networks Library Volume 1, Appendix C, Section C-1.4.2 for a complete definition of Logical
segment types.

An example is shown below.

Table 7 - Example Using Logical Segments for Attribute Properties

Segment Contents Notes
[20][01][24][01][30][03][3C 07][05] Segment Type = Logical Segment.

20 01 indicates class 1 (Identity Object)
24 01 indicates instance 1
30 03 indicates attribute 3 (Product Code)
3C 07 05 indicates metadata property 5 (Name)

If a Get_Attribute_Single request was sent with this path, the response should be a string equal to
“Product Code” which is the value of the Name property of the Identity Object’s third attribute.
More work would need to be done on this idea. The items in columns 2-5, and column 7 are
straightforward and could be exposed with minimal specification work. Column 6, Data Type, would
require some investigation for things like structures and arrays. There are constructs defined in Volume
1, Appendix C that may be used. Standardizing the information in column 8, Semantics of Values, would
require significant changes from how it is currently used but is possible using some form of constraint
language. If we only accomplished Columns 2-5 and 7, that would provide meaningful metadata to
someone without access to the object definition. Exposing column 6 is particularly important and within
our reach. Column 8 would be powerful and complete the model for online metadata access.

Understanding Data Offline
Param, Assem, and Variant entries in an EDS file can be used to describe any data. Param entries
provide a very comprehensive set of fields to fully describe data including fields like Parameter Name,
Data Type, Units String, Help String, etc. The example below exposes details about the Connection
Manager Object’s Percent I/O Utilization attribute.

2023 ODVA Industry Conference 9 ©2023 ODVA, Inc.

[Params]
Param1 = 0,
6,"20 06 24 01 30 F0", $ Link Path Size, Link Path to Connection Manager Object
0x0002, $ Descriptor
0xC7, 2, $ UINT Data Type, Data Size
"Percent I/O Utilization", $ Name
"%", $ Units
"Indicates what percentage of the I/O communications resources are in use in this
device in units of 0.1%", $ Help string
0,1000,0, $ Min/Max/Default
,,,, $ Unused fields
,,,,
;

More complex data such as structures can be represented in Assem entries. Vendors could describe
any, or every supported attribute in their products’ EDS files. With this information any client could
present a very complete picture of the data to a human actor.

Delivering Data
Finally, getting all this data takes time, especially when it needs to travel from the edge to the cloud.
Providing efficient means to retrieve this information will make its collection more practical and have less
impact on the high priority traffic in the system. Highly granular, grouped, and bulk transfer mechanisms
should be available to cover any amount of data and the variety of data science use cases.

Request, response messaging whether unconnected or over a Class 3 connection provides a highly
granular approach to getting the data. These exchanges are best suited for small amounts of specific
data but could be expensive in terms of network bandwidth when many requests are made.

For multiple small requests, the Message Router Object provides the Multiple_Service_Packet service.
Using this service allows you to specify an array of CIP service requests in one packet. This is a more
efficient mechanism than sending a single request and then blocking while waiting for a response.
However, this service is still subject to packet size limitations. For much larger requests, the Message
Router Object provides the Send_Receive_Fragment service. This service is used when the request,
response, or both exceed the size of a single packet.

We have good options for granular and grouped data collection, but new transports should be defined
that would facilitate the exchange of large amounts of data. Volume 1 reserved Transport Class 4 as
Non-blocking, Class 5 as Non-blocking, fragmenting, and Class 6 as Multicast, fragmenting all without
definition. Now would be an appropriate time to revisit these and define an effective bulk transport. This
would not only benefit the Data Scientist but may also support faster firmware update or device
configuration times.

Conclusion
CIP provides a rich collection of optional functionalities. This paper serves several intended purposes:
first to shine some light on these lesser-known functionalities, second to spark a conversation and
participation in improving what we already have, and third to build support in the ODVA vendor
community for incorporation of these features into products.

Our end users will benefit from:

• Online discovery aids like the Message Router’s Object_List attribute and every object’s class
attributes (Max Instance, Number of Instances, Optional attribute list, etc.).

• Online metadata (once defined)
• Offline descriptions of all valuable data within a product (i.e., rich EDS files with Object Class

sections and Param entries to define attributes)
• Support for alternative transport mechanisms like the Multiple_Service_Packet and

Send_Recieve_Fragment services.

2023 ODVA Industry Conference 10 ©2023 ODVA, Inc.

Data science is still a young field, but it is being incorporated into our systems more each day. As our
end users discover the data that we have been providing, they will come to value our products even
more. We want to ensure that we maximize that value by enabling data scientists as much as possible
and not frustrating them with limited capabilities.

References

[1] The CIP Networks Library Volume 1, Common Industrial Protocol (CIPTM)
[2] The CIP Networks Library Volume 2, EtherNet/IP Adaptation of CIP
[3] The CIP Networks Library Volume 8, CIP SecurityTM
[4] IEEE Std 802.1AB-2016 – IEEE Standard for Local and metropolitan area networks – Station
and Media Access Control Connectivity Discovery

**
The ideas, opinions, and recommendations expressed herein are intended to describe concepts of the author(s) for the possible use
of ODVA technologies and do not reflect the ideas, opinions, and recommendation of ODVA per se. Because ODVA technologies
may be applied in many diverse situations and in conjunction with products and systems from multiple vendors, the reader and
those responsible for specifying ODVA networks must determine for themselves the suitability and the suitability of ideas, opinions,
and recommendations expressed herein for intended use. Copyright ©2023 ODVA, Inc. All rights reserved. For permission to
reproduce excerpts of this material, with appropriate attribution to the author(s), please contact ODVA on: TEL +1 734-975-8840
FAX +1 734-922-0027 EMAIL odva@odva.org WEB www.odva.org. CIP, Common Industrial Protocol, CIP Energy, CIP Motion, CIP
Safety, CIP Sync, CIP Security, CompoNet, ControlNet, DeviceNet, and EtherNet/IP are trademarks of ODVA, Inc. All other
trademarks are the property of their respective owners.

http://www.odva.org/

	Abstract
	Keywords
	Definition of terms
	Introduction
	Discovery
	Discovering Devices
	Discovering Data Online
	Discovering Data Offline
	Understanding Data Online
	Understanding Data Offline
	Delivering Data
	Conclusion
	References

