

Industrial Automation Wireless Networks Update – Ever More Relevant for ODVA

Bob Voss, David Brandt, Paul Didier Panduit, Rockwell Automation, Cisco

- Use Cases
- Technologies Current State
- Key Industrial Considerations
 - Resiliency
 - Latency/Jitter
 - Time synchronization
- Architectures
- ODVA Impact

Wireless is a key enabler for digitizing operations

Applications have unique wireless requirements

Technical Track © 2023 ODVA, Inc.

- Smart devices
- Automated Guided
- Surveillance Cameras
- Human Machine Interface
- Remote Expert
- Augmented Reality
- Sensors, Actuators
- Wireless Tooling
- Mobile Work-Cell
- Product Downloads

Use Cases

Technical Track © 2023 ODVA, Inc.

Higher data rates

- Improved modulation for up to 9.6Gb/s per radio and single-antenna speeds of 1.2Gb/s
- 8x8:8 Spatial streams (vs. 4x4:4) increasing density – Multiple Input, Multiple Output (MIMO)

Increase in overall network capacity

- More Industry, Scientific and Medical (ISM) spectrum
- 3-4x more throughput than 802.11ac via improved modulation scheme
- Up to 4x capacity gain in dense scenarios with underlying infrastructure services

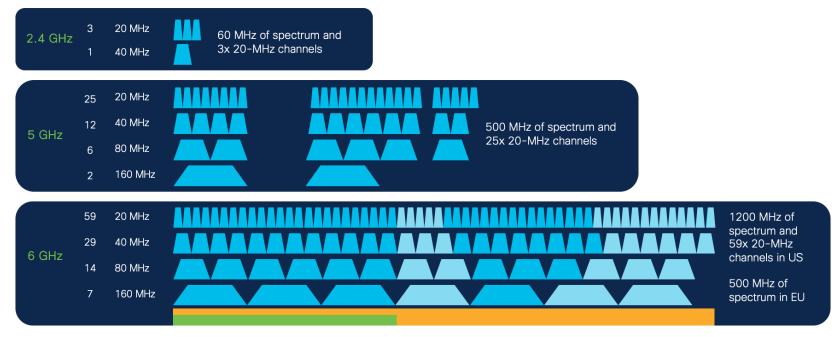
The Advantages of Wi-Fi 6/6E

Reduced latency and greater reliability

- Scheduled uplink/downlink windows for deterministic 'cellular-like' latency, reliability i.e. Quality of Service
- Optimized for IOT scale with 100s of devices per AP
- Spectrum w/o Listen-Before-Talk (LBT)

Improved power efficiency

- Up to 3x better battery life with Target Wake Time (TWT)
- New coding structure and signaling procedures for better Transmit/Receive efficiency


For more information see: https://www.cisco.com/c/en/us/products/collateral/wireless/white-paper-c11-740788.html

Technical Track © 2023 ODVA, Inc.

6 GHz is the biggest Wi-Fi spectrum expansion ever

Band Channels Bandwidth

Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

Wi-Fi 7 (802.11bn) Enhancements

Higher data rates

- Up to 4K QAM (12-bits/Hz) for 46Gb/s per radio and single-antenna speeds of 2.8Gb/s
- 320MHz channels (vs. 160MHz) and 16x16:16 spatial streams (vs. 8x8:8)

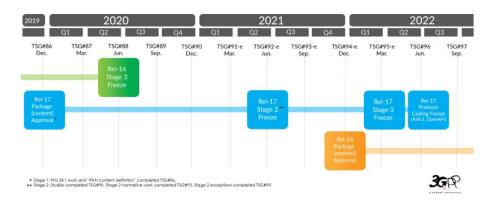
Increase in throughput and resiliency

- Multi-link operation (MLO) or "carrieraggregation" better exploits available spectrum (e.g., simultaneous 5GHz 160MHz + 6GHz 320MHz)
- MLO can also be used for redundancy or improved resiliency via per-packet link selection

5G compatible QoS

- Scheduled uplink/downlink transmissions enabled for bounded latency and reliability
- Enables mission critical apps like AR/VR and IOT/industrial @ scale (10-100s devices per AP)
- 5QI QoS mapping via SCS/WTSN

Emergency services support


- Emergency Preparedness Communication Service (EPCS) enables priority channel access (PAC) for first responders
- Combined with WBA OpenRoaming, opens guest Wi-Fi to Emergency Services.

For more information see: https://wballiance.com/road-to-wi-fi-7/

Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

Release 17 (3gpp.org)

5G New Radio, or 5G NR, is a set of standards that replace the LTE network <u>4G</u> wireless communications standard.

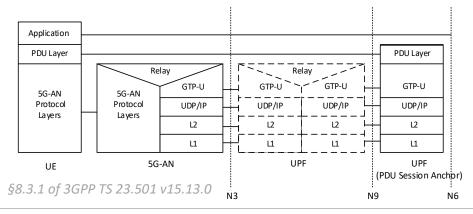
5G Release 17

- Sidelink enhancements (UE to UE comms)
- Reduced capability (Redap) NR devices,
- NR operation extended to 71GHz,
- Further enhancements on MIMO for NR,
- NR over Non terrestrial Networks (NTN),
- IoT over NTN,
- UE power saving enhancements for NR,
- Enhancements to Integrated Access and Backhaul for NR,
- Enhancement of RAN slicing for NR,
- RF requirements enhancement for NR FR1,
- RF requirements for NR FR2,
- Coverage and positioning enhancements,
- NR and slicing QoE,
- Enhanced support of non-public networks,
- Support for uncrewed aerial systems,
- Support for edge computing in 5GC,
- Proximity-based services in 5GS,
- Access traffic steering, switch and splitting (ATSSS),
- Network automation for 5G (Phase 2).

Technical Track © 2023 ODVA, Inc.

Feature	Release 15 (2018/2019)	Release 16 (2020)	Release 17 (2022)
URLLC	All basic features (for IMT-2020 compliance)	Adds redundant transmissions, QoS monitoring	No new features
Ethernet PDU	No	Yes	Yes
Time Sync Support	None	IEEE 802.1AS gPTP only	IEEE 1588 PTP (CIP Sync)
Positioning	< 50 m	< 3 m	< 1 m
Network Slicing	Basic slicing features (similar to VLAN)	Adds network slice-based authentication (NSSAA)	Adds slice groups (NSSRG), enhanced RAN support
ΙΙοΤ	Relies on LTE	5G core support for NB-IoT	NR RedCap (replacement for LTE Cat 1)

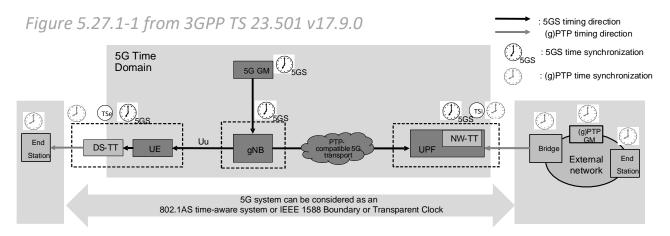
5G Feature Release


- Feature release for telecom providers remains 5G vendor priority
- Significant lag between 3GPP specification release and commercial availability (particularly of "industrial" features not needed by telecom)
 - Release 16 completed in 2020
 - No infrastructure supporting Release 16 features (e.g., time sync support) until end of 2023 / early 2024
- 5G modems more closely follow 3GPP releases
 - Some updates via firmware, many require new silicon
 - More likely to see "Release 16-compliant" 5G modem
- Infrastructure adds features from future 3GPP releases incrementally
 - Typically via software update
 - Follows vendor internal roadmaps
 - Features from lower-numbered 3GPP releases generally added first
 - Some features (e.g., localization) may require special hardware support in basebands

Technical Track © 2023 ODVA, Inc.

5G Carries EtherNet/IP Natively

- 5G networks natively support traffic over TCP/IP (e.g., IPv4 PDU)
- Support for Ethernet frames added in 3GPP Release 16 (Ethernet PDU)
 - Most existing 5G equipment on the market today does not support Ethernet PDU
- EtherNet/IP is carried by TCP and UDP, so EtherNet/IP can run on any 5G!
 - Most industrial protocols need special tunneling (e.g., VXLAN) or Ethernet PDU support
- Special support needed for: 1) Time synchronization (motion), 2) Multiple devices behind a UE

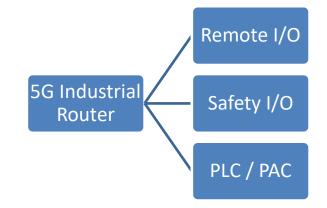


- PDU layer: PDU = protocol data unit. This layer corresponds to the PDU carried between the user equipment (UE) and the data network (DN) over the PDU Session.
 - When the PDU Session Type is IPv4 or IPv6 or IPv4v6, it corresponds to IPv4 packets or IPv6 packets or both of them.
 - When the PDU Session Type is Ethernet, it corresponds to Ethernet frames.
- 5G-AN: 5G access network
 - GTP-U: GPRS Tunnelling Protocol for the user plane

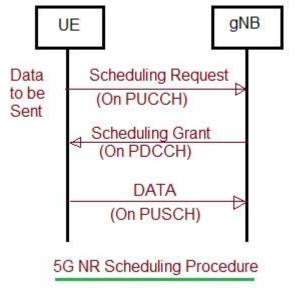
Technical Track © 2023 ODVA, Inc.

5G Support for Time Synchronization

- 5G system (5GS) supporting Release 16+ will correct residence time via TSN Translators (TTs)
- Two types of TTs: device-side TT (DS-TT; TSN master), and network-side TT (NW-TT)
 - Grandmaster may be internal or external to the 5G system; at most one NW-TT can be a TSN slave
- 5G system uses its own synchronization mechanisms internally, adds residence time to correction field
- Release 16 supports IEEE 802.1AS gPTP; Release 17 adds support for standard PTP (CIP Sync)
 - Vendors may choose when to implement features according to their own product roadmaps



Support for Multiple Devices Behind Single UE


- Advantageous if single UE can support multiple automation devices
 - 5G user equipment (UEs) are expensive
 - Many automation devices will not integrate 5G radios
- 5G is designed to connect single device (i.e., phone)
- Tunneling / VXLAN can be used to support multiple devices behind UE
 - May need "extra box" behind UE to act as tunnel endpoint
 - Some UEs can run containers (e.g., with OpenVPN)
- 5G also supports "framed routing" (TS 23.501 §5.6.14)
 - Originally developed as part of RADIUS (RFC 2865)
 - Also called "Routing Behind Mobile Station" or "Routing Behind UE"
- Example of how framed routing works:
 - Allocate small subnet (/27 or smaller) behind UE
 - This subnet is associated with a user name and password, stored in 5G core, specifically unified data management (UDM) service
 - 5G UE attached to network using SIM credentials (primary authentication)
 - 5G UE may also authenticate to data network using EAP (typically via PAP or CHAP) – this is called secondary authentication
 - When UE performs secondary authentication, route created in core to subnet associated with secondary authentication credentials

https://www.industrialnetworking.com/pdf/HMS-anybus-wireless-bolt.pdf

https://www.rfwireless-world.com/5G/5G-NR-Scheduling-Request-Procedure.html

Grant-Free Scheduling

- End devices (UEs) typically must request permission (grant) to send uplink data
- Delay caused by scheduling request procedure unacceptable for low-latency applications
- Grant-free scheduling (also called transmission without grant, TWG) possible
 - Base station reserves resources for uplink for each UE; UE can transmit on these at any time
 - Lowers latency, but reduces throughput
- Periodicity of grant-free uplink resources is adjustable

1:1 Slot Ratios

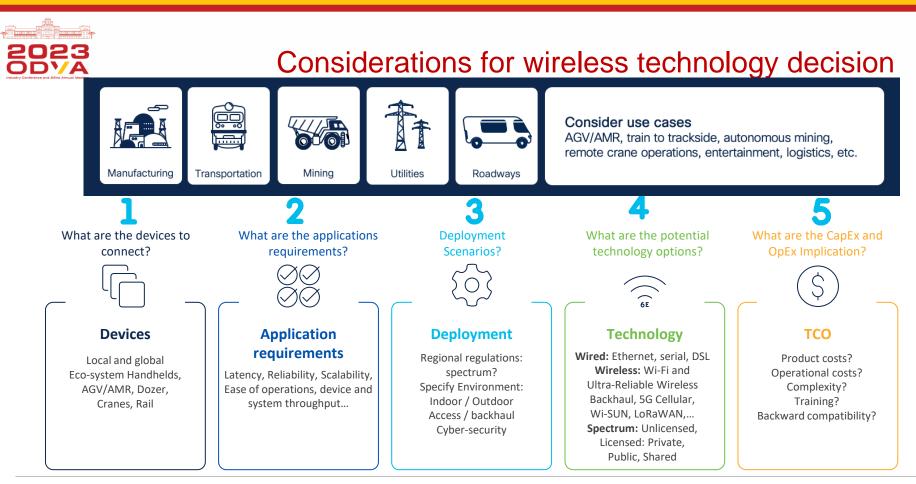
- EtherNet/IP typically has approximately equal traffic in each direction
- Typical cellular use cases are downlink heavy (e.g., streaming video)
- 5G divides resources in time into frames, subframes, slots, then symbols
 - Individual symbols can be allocated for downlink, uplink, or flexible
 - Takes time to switch radios between downlink and uplink
- With time-division duplexing, slots (each containing 14 symbols) are typically allocated as downlink (D), uplink (U), or special (S; mix of symbols)
- Slot patterns set ratio of uplink to downlink traffic, as well as retry delay
 - 5G base stations and UEs initially offered only a few fixed slot ratios
 - Closest to symmetric was 4:1 downlink to uplink, such as DDDSUUDDDD
 - Current 5G equipment may offer nearly 1:1 slot ratio, e.g., DDSUU
- Even with 1:1 slot ratio, downlink throughput is typically better
 - E.g., due to MCS differences, such as higher-order QAM in downlink

5G-ACIA

- 5G Alliance for Connected Industries and Automation
 - Working Party of ZVEI (German Electrical and Electronic Manufacturers' Association)
- Industrial + Telecom members
- Industrial use case development
 - Whitepapers
 - Contributions to influence 3GPP, ETSI, etc.

chine >99.999				service area	
	99% < 2 ms	s 20 bytes	>100	100 m x 100 m x 30 m	
l >99.999	99% < 0.5 m	15 50 bytes	~20	15 m x 15 m x 3 r	
achine >99.999	99% < 1 ms	s 40 bytes	~50	10 m x 5 m x 3 m	
motion >99.999	99% 1 ms	40-250 bytes	100	< 1 km²	
ted >99.999	9% 10-100	ms 15 – 150 kbyte	es 100	< 1 km²	
bots or >99.999	9% 4-8 ms	s 40-250 bytes	4	10 m x 10 m	
>99.999	9% 12 ms	40-250 bytes	2	40 m x 60 m	
>99.99	9% → 50 m	ns Varies	10000	10000 devices per km ²	
Process automation (process monitoring) Source: ZVEI		>99.99% > 50 m	>99.99% > 50 ms Varies	>99.99% > 50 ms Varies 10000	

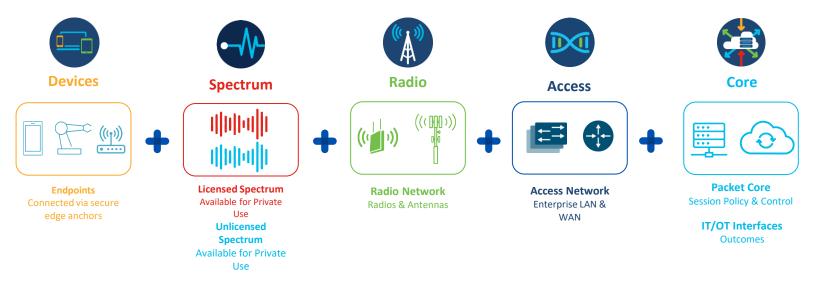
Six Nines (99.9999%) is wired Ethernet reliability


Technical Track © 2020 ODVA, Inc. 2020 Industry Conference & 20th Annual Meeting All rights reserved.

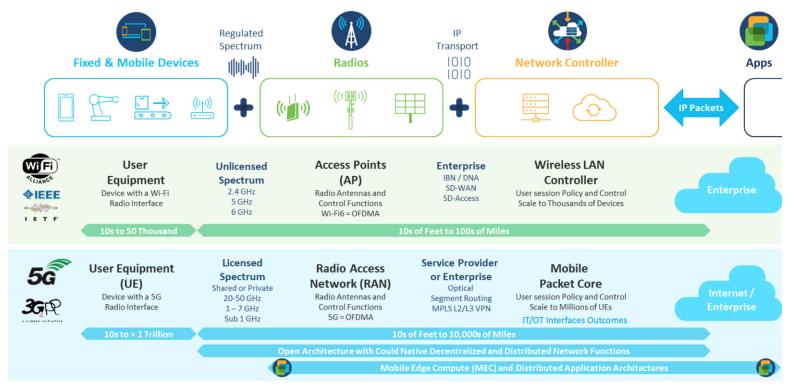
Key Considerations

Indoor/Outdoor Fixed/Mobility Low/High Data Rate Best Effort/Mission Critical Device Availability	Use Case Particularity Custo	Spectrum Options	Licensed/Unlicensed/Shared Low/Medium/High Band Public/Private Country's regulations
Throughput Transmit Power Coverage Power input	Cho Technology Differentiation	TCO Consideration	Certifiability Capex & Opex Compatibility Scalability Eco-system

Technical Track © 2023 ODVA, Inc.


Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

What is Private Wireless?


A private network that is built using **fit-for-purpose technology, dedicated** to carrying **traffic from a specific entity** (e.g., an enterprise) in **licensed** or **unlicensed** radio spectrum

Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

Wi-Fi & 5G Comparable Architectures

Technical Track © 2023 ODVA, Inc. 2023 Industry Conference & 22nd Annual Meeting All rights reserved.

Impact on CIP and EIP

- RA/Ericsson blog CIP can be carried as a routed protocol or tunneled protocol, Safety and I/O ready to go, Release 16/17 for CIP Sync 16-.1AS 17-PTP default option, TSN –capability (802.1AS, Scheduling) - TBD a bigger
- CIP/EIP runs natively on WiFi networks. WiFi enhancements improve resiliency, latency and performance. WiFi still not PTP aware.

2023 ODV/A