

Practical applications of Lightweight Block Ciphers to Secure EtherNet/IP Networks

Jordon Woods Chief Technical Officer Innovasic, Inc.

Patricia Muoio Director of Research and Development G2, Inc.

A New Era?

- 50B Internet connected devices by 2025 (IoT)
- Of that 50B, ~40% will be Industrial devices (Industry 4.0, IIoT)
 - (Source: IHS 2013, Internet Connected Devices)
- These devices are sensors, actuators, field devices...

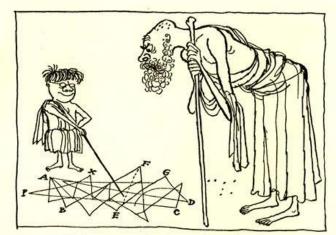
 ...used in Building Automation, Factory Automation, Process Automation, Water/Wastewater, Transportation, Smart Grid,

etc.


Technical Track © 2015 ODVA, Inc. 2015 Industry Conference & 17th Annual Meeting All rights reserved.

www.odva.org

- Realities
 - Widely dispersed
 - Interconnected
 - Homogeneous networks
 - Not very secure
 - Enormous attack surface
 - Consistency across platforms
 - Hardware, SW, languages, devices, etc.
- Constraints
 - Limited processing resources
 - Limited memory
 - Cost-constrained
 - Area/footprint constrained

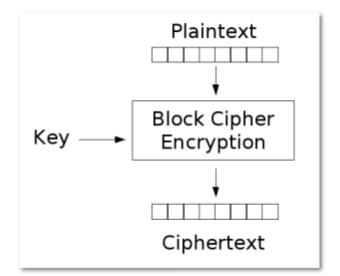

Constraints of the IIOT

The Promise of Lightweight Cryptography

- The small size and limited processing power of many connected devices could inhibit encryption and other robust security measures.
 - Edith Ramirez, chair, US Federal Trade Commission
- Cryptographic solutions must be easy to implement and have high performance on a wide range of severely constrained devices. Cryptography should be an aid, not a hindrance, to achieving security

Pythagoras puzzled by one of my theorems.

Why Not AES?


- Existing cryptographic algorithms were, for the most part, designed to meet the needs of the desktop computing era
 - AES was designed specifically for environments that support a standard PC architecture
 - Power, memory and size essentially unconstrained
 - Substantial Latency/overhead
 - Over the last 15 years, a lot of effort has gone into reshaping the AES into a solution which will work in physically constrained systems
 - Still falls short for highly-constrained devices

The Promise of Lightweight Cryptography

- Lightweight cryptography lends itself to implementation as a block cipher
 - Small hardware footprint compared to comparable AES implementations
 - Scalable, pipelined architecture
 - In-line encryption/decryption
 - Comparatively low latency
 - Can be realized by small circuits with minimal power requirements
 - Provides comparable security to AES for a given key size

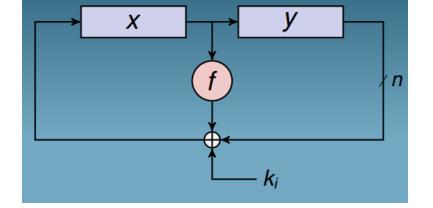
SIMON & SPECK

- Most Lightweight cryptography are designed for specific platforms (PRESENT, KATAN, Piccolo, etc.)
- Poor performance on other platforms can ruin overall performance
- SIMON & SPECK
 - Two families of highly flexible block ciphers.
 - High performance on ASICs, FPGAs, Microcontrollers and Microprocessors.
 - Flexible and secure
 - SIMON and SPECK are generalists

- Versatile in hardware and software
- For pure hardware apps SIMON outperforms SPECK
- Small, fast, low energy and power. Record breaking performance on ASICs and FPGAs
- Excels on microcontrollers and microprocessors too

- Versatile in software and hardware
- For pure software apps SPECK
 outperforms SIMON
- Small, fast, low energy and power. Record breaking performance on microcontrollers and microprocessors
- Excels on ASICs and FPGAs as well

- SIMON & SPECK achieve robust encryption using repeated rounds of simple functions
- For SIMON, each round consists of a two-stage Feistel map. The Feistel map for the SIMON algorithm is given by:


 $R_k(x,y) = (y \oplus f(x) \oplus k, x)$

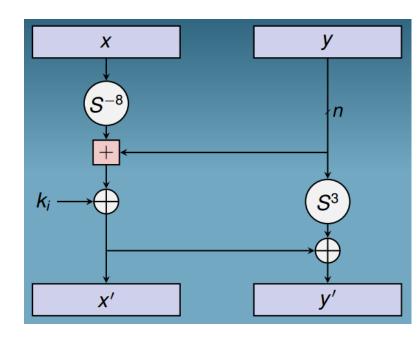
Where k is the round key and

 $f(x) = (Sx \& S^8 x) \oplus S^2 x.$

The inverse of the round function is used for decryption:

 $R_k^{-1}(x, y) = (y, x \oplus f(y) \oplus k)$

 The SPECK algorithm also utilizes a Feistelbased map:


$$R_k(x,y) = \left(\left(S^{-\alpha} x + y \right) \oplus k, \, S^{\beta} y \, \oplus \left(S^{-\alpha} x + y \right) \oplus k \right),$$

with rotation amounts $\alpha = 7$ and $\beta = 2$, if n = 16 (block size = 32) and $\alpha = 8$ and $\beta = 3$ otherwise

The inverse of the round function uses modular subtraction for decryption:

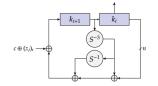
$$R_k(x,y) = \left(S^\alpha\big((x\oplus k) - S^{-\beta}(x\oplus y)\big), S^{-\beta}(x\oplus y)\big).$$

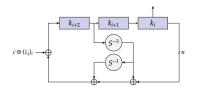
SIMON & SPECK Parameters

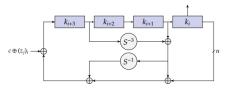
 Each algorithm makes use of "rounds" or iterations operating on a given block sized and key size

block size 2 <i>n</i>	key size mn	word size n	key words <i>m</i>	const seq	rounds T	block size 2n	key size mn	word size n	key words <i>m</i>	$\frac{rot}{\alpha}$	rot β	rounds T
32	64	16	4	<i>z</i> ₀	32	32	64	16	4	7	2	22
48	72	24	3	z_0	36	48	72	24	3	8	3	22
	96		4	z_1	36		96		4			23
64	96	32	3	<i>z</i> ₂	42	64	96	32	3	8	3	26
	128		4	z_3	44		128		4			27
96	96	48	2	Z2	52	96	96	48	2	8	3	28
	144		3	z_3	54		144		3			29
128	128	64	2	Z2	68	128	128	64	2	8	3	32
	192		3	z_3	69		192		3			33
	256		4	z_4	72		256		4			34

SIMON Parameters

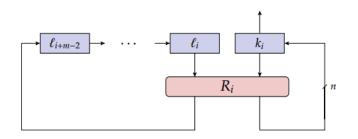

SPECK Parameters


Technical Track © 2015 ODVA, Inc. 2015 Industry Conference & 17th Annual Meeting All rights reserved.



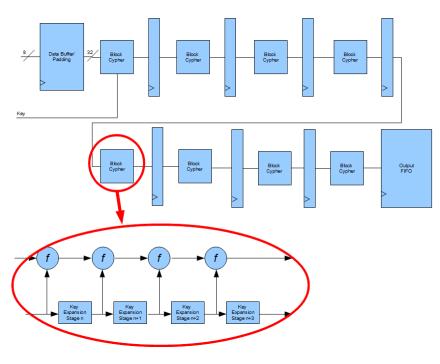
Key Schedule

 Likewise, each algorithm generates "sub-keys" for each round. Sub-keys depend only upon the block/key size and thus, may be pre-calculated



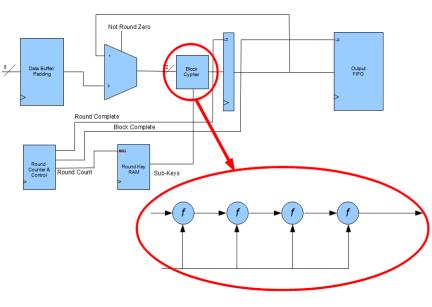
SIMON 2, 3, & 4 word Key Expansion

Technical Track © 2015 ODVA, Inc. 2015 Industry Conference & 17th Annual Meeting All rights reserved. $\ell i+m-1 = (ki + S^{-\alpha}\ell) \bigoplus i$ and $ki+1 = S^{\beta}ki \bigoplus \ell i+m-1.$



SPECK key expansion, where R_i is the SPECK round function with i acting as round key.

SIMON Example


- A simple SIMON 32/64 implementation
 - 3 Pipeline stages to buffer 8-bit data to a 32-bit block
 - Pad bytes are needed for messages not comprised of an even number of block
 - Eight additional pipeline stages
 - Four SIMON rounds per pipeline stage
 - A total of 11 pipeline stages for a total of 88 nS latency at 125 MHz

SIMON Example

- BUT:
 - Sub-keys can be pre-calculated and stored to reduce hardware footprint
 - Intermediate round results can aren't needed, so the cypher block can be reused on subsequent rounds
 - Need to add only a small amount of control logic
- Further optimizations are readily feasible.
 - All 44 rounds of SIMON 64/128 can be performed in a single pipeline stage
 - Can be clocked at 300 MHz for a 130nm process node
 - 8 pipeline stages (7 data buffering, 1 for SIMON) total less than 27 nS of total latency at 300 MHz

- For most platforms and constraints SIMON, SPECK or both outperform existing block ciphers
 - ASIC/FPGA area
 - ASIC/FPGA efficiency (throughput/area)
 - Latency
 - Ease of side-channel protection
 - Power and energy efficiency
 - Software performance (size, speed, energy) on 8-, 16-, 32- and 64-bit processors

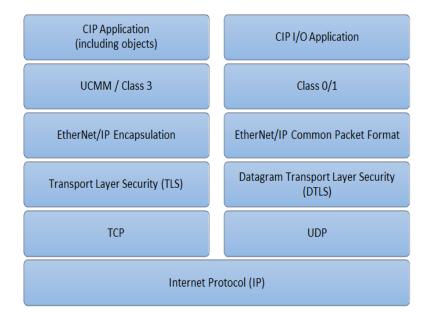
SIMON & SPECK Peformance

 For a given block and key size, SIMON & SPECK provide comparable or superior security to AES

SIMON & SPECK vs. AES

siz	е	S IMC	N rounds	SPEC	SPECK rounds			
block	key	total	attacked	total	attacked			
48	96	36	24 (67%)	23	15 (65%)			
64	96	42	28 (67%)	26	18 (69%)			
64	128	44	29 (66%)	27	19 (70%)			
96	96	52	37 (71%)	28	16 (57%)			
96	144	54	37 (69%)	29	17 (59%)			
128	128	68	49 (72%)	32	17 (53%)			
128	192	69	49 (71%)	33	18 (55%)			
128	256	72	50 (69%)	34	19 (56%)			
AES	S-128	10	7 (70%)	10	7 (70%)			
PRE	SENT	31	26 (84%)	31	26 (84%)			

• For a given block and key size, SIMON is more efficient than AES


Size	Algorithm	Area (GE)
128/128	SIMON	1234
	Speck	1280
	AES	2400

Technical Track © 2015 ODVA, Inc. www.odva.org

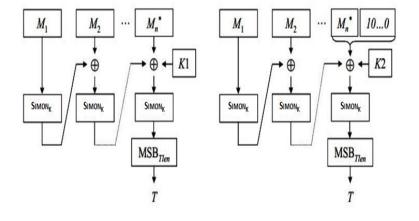
Application to CIP Security

- CIP Security uses proven, open security technologies:
 - X.509v3 Digital Certificates used to provide cryptographically secure identities to users and devices
 - TLS (Transport Layer Security) and DTLS (Datagram Transport Layer Security) cryptographic protocols used to provide secure transport of EtherNet/IP traffic
 - Hashes or HMAC (keyed-Hash Message Authentication Code) as a cryptographic method of providing data integrity and message authentication to EtherNet/IP traffic
 - Encryption as a means of encoding messages or information in such a way as to prevent reading or viewing of EtherNet/IP data by unauthorized parties

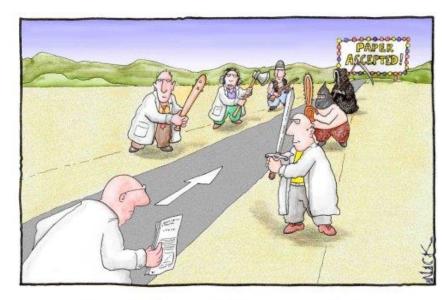
Application to CIP Security

- Obvious applications of SIMON & SPECK
 to CIP Security is message encryption
- However, CIP Security is also strongly focused on authentication
 - Digital Certificates for identity establishment
 - HMAC for message authentication
- Hash algorithms and RSA based certificate exchange also require significant resources
- An alternative for highly-constrained devices may be attractive

Alternative for Authentication

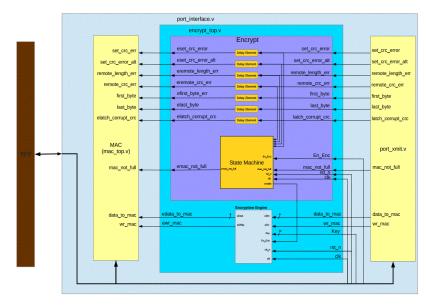

- Cipher-based message authentication code (CMAC) provides an alternative means of message authentication based on a symmetric key block cipher
 - NIST special publication 800-38B
 - Proven implementations with AES (IPSEC)
 - Suitable for SIMON & SPECK
 - May be more appropriate for highlyconstrained devices
 - In extremely constrained environments, the symmetric keys can be pre-shared

CMAC Overview


- The CMAC algorithm:
 - Takes a message (*M*), of bit length *Mlen*
 - Chains the block cypher by acting on a single block (*Mi*) and using a bitwise exclusive-or to sum the output of each stage in the chain
 - Produces a MAC, a.k.a message authentication code, (*T*), of bit length *Tlen*
 - *T* is appended to the outgoing message
 - On ingress, the process is repeated and the resulting MAC is compared to the MAC appended to the message
 - The CMAC algorithm also makes use of subkeys
 - Distinct from the sub-keys generated for each SIMON/SPECK round

Setting a High Bar

- ODVA makes consistent use of proven technologies
- Clearly, to be of use, SIMON & SPECK must be standardized and pass a high-level of scrutiny with the security community
 - SIMON and SPECK have been submitted for inclusion in ISO 29192-2, the standard for lightweight block ciphers. This proposal is currently in review
 - Significant analysis of this technology has already been performed and shows great promise for robust security in constrained applications
 - Open technology. The algorithm and associated research are public domain

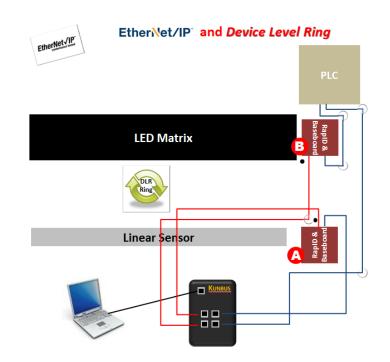


Most scientists regarded the new streamlined peer-review process as 'quite an improvement.'

A Practical Example

- Goals:
 - Based upon an existing Ethernet/IP DLR demonstration
 - Integrated SIMON IP with Switch IP.
 - No changes to stack or application SW.
 - Completely transparent to Demo operation.

- SIMON 32/64
 - 32 rounds; Key 64 bits
 - Message encryption only
 - Layer 3 and above
- Latency
 - 11 stages @ 125 mhz; 88 ns
- Input data
 - 8 bit, 1-3 pad bytes added
- Key change process
 - Key expansion pre-computed to minimize latency
 - Requires pipeline flush and stall


Demonstration Parameters

block size $2n$	lock key ze $2n$ size mn		key words <i>m</i>	const seq	rounds T	
32	64	16	4	z_0	32	
48	72	24	3	z_0	36	
	96		4	z_1	36	
64	96	32	3	<i>Z</i> ₂	42	
	128		4	z_3	44	
96	96	48	2	Z_2	52	
	144		3	Z_3	54	
128	128	64	2	Z_2	68	
	192		3	z_3	69	
	256		4	z_4	72	

- Linear Sensor provides position information.
 - Control module routes data to PLC
- PLC provides simple ladder logic to route linear sensor data to the display Rapid Platform
 - Control module renders position on the display
- The encrypted link is shown in red between the REM-based modules labeled a and b with the security algorithm enabled.
- A network tap installed on the encrypted link and on the unencrypted link.
- A network analyzer demonstrates secure link is operational and transparent to operation.

Demonstration Operation

A Practical Example

- Goals:
 - Based upon an existing Ethernet/IP DLR demonstration
 - ✓ Integrated SIMON IP with Switch IP.
 - ✓ No changes to stack or application SW.
 - Completely transparent to Demo operation.
 - 200 uS DLR beacon traffic unaffected by encryption
 - SIMON effectively looks like a slow wire (88 nS on ingress and egress)

Conclusions

- Ethernet has enjoyed unprecedented success as a communication medium
 - The promised explosions of IoT, iIoT and Industry 4.0 threaten to dwarf this success
- Don't believe in the IOT explosion? Consider this:
 - How many MAC Addresses did you use in 1998? Typically less than 5:
 - Work computer, home computer, a laptop. . .
 - Move to 2014. Now how many MAC Addresses do you use? Typically 10 to 15:
 - Cell phone, IP phone, laptop (2 1 for wired, 1 for wireless), laser printer (2 – same reason), set top box (2), TV, BluRay player, tablet, computer at home (2), wireless AP, . . .

Conclusions

- Ethernet's continued success will give rise to a host of new applications with extremely limited resources
- SIMON & SPECK potentially address such applications and should be considered as CIP security technologies evolve.
- Lightweight block cyphers offer:
 - A small hardware footprint (SIMON)
 - Small software footprint (SPECK)
 - Scalability
 - In-line encryption/decryption;
 - Low latency; Low jitter
 - Comparable security to AES

"We were ahead of the curve, and then

the curve ran right over us."

NERSON

WWW.ANDERTOONS.COM

BAM!.

