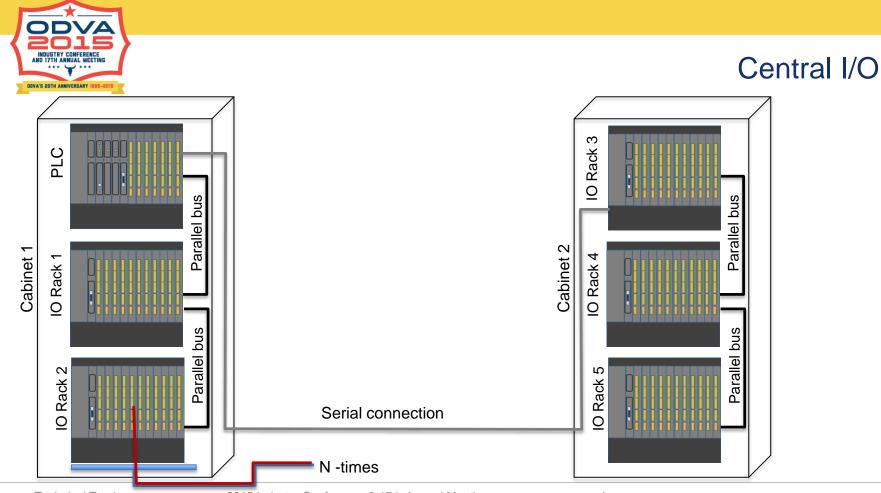


Conversion of Fieldbusses regarding Industrial Internet of Things

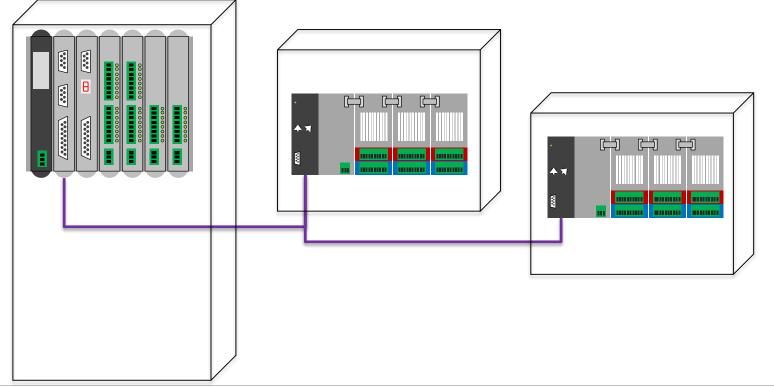
- Development of fieldbusses in Factory Automation
- Requirements from Industrial Internet of Things / Industrie 4.0
- Future impact of Time Sensitive Networks on Industrial Ethernet


2

History of Fieldbusses

1980s

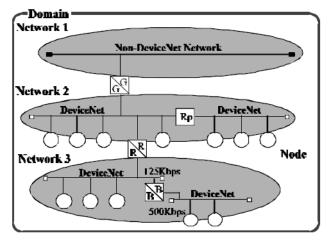
- Replacement of hardwired I/O connection to reduce wiring cost
- Data exchange between automation controllers
- Synchronized motion systems

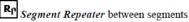


Technical Track © 2015 ODVA, Inc. 2015 Industry Conference & 17th Annual Meeting All rights reserved.

www.odva.org

I/O via Fieldbus




Technical Track © 2015 ODVA, Inc. 2015 Industry Conference & 17th Annual Meeting All rights reserved. www.odva.org

- Introduced in 1995 .
- Based on CAN (ISO11898) ٠
 - widely used in vehicles
- Variety of application ٠
 - Master / Slave
 - Client / Server
 - Peer to Peer
 - Cyclic, Change of State
 - Unicast or Multicast
- Object oriented design ٠
- Routing and bridging ۰

Segments participate in the same media arbitration

BB Subnet Bridge between subnets

- Duplicate MAC ID check passes through
- MAC ID's on one subnet may not be duplicated on the other subnet
- Subnets may operate at different baud rates

Network Router between similar networks

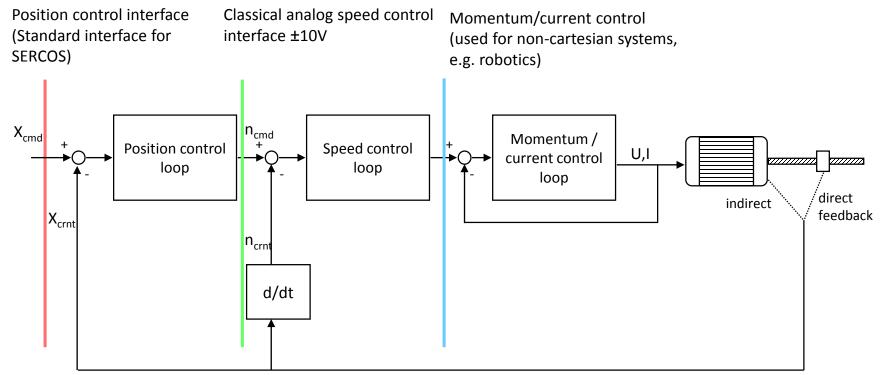
Both networks are DeviceNet

 \mathcal{C} Gateway between dissimilar networks

One network is DeviceNet, the other is not

Controller to Controller Communication

- Automation driven by automotive industries
- The 1980s: CIM, MAP/MMS driven by GM, initial point of Industrie 4.0
- Vertical integration
- Profibus/FMS was defined as a subset of MMS, main use C2C
- PC used for HMI and control → Ethernet, TCP/IP



CNC, RC and Motion Control

- First applied in machine tools
- High precision and fast control loops needed
 - Local control loops preferred
 - Distribution of control loops depends on application
- Commissioning mostly online

Servo drive control loops

2015 Industry Conference & 17th Annual Meeting All rights reserved.

CNC, RC and Motion Control

- First applied in machine tools
- High precision and fast control loops needed
 - local control loops preferred
 - Distribution of control loops depends on application
- Commissioning mostly online
- First digital interface: Sercos
 - Fiber optics for EMC
 - TDMA for real time high precision timing
 - Initially only drives
 - Specialized for synchronized motion

Differences in Application Properties

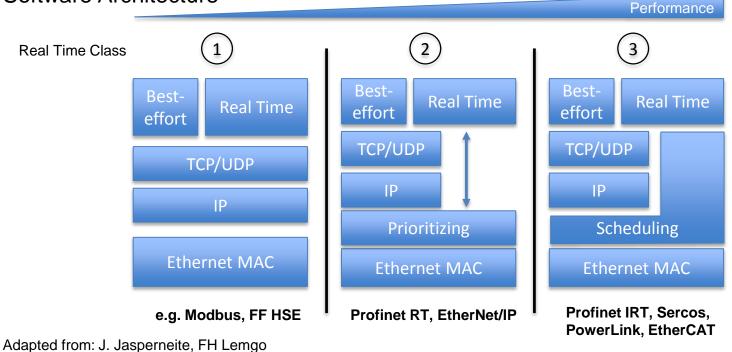
- Different usage \rightarrow different properties
- Offline configuration \rightarrow EDS
- Machine only working with all drives \rightarrow error if one is missing

	I/O	C2C	Motion
Offline configuration	Х		
Online configuration			х
Config at connection	Х		х
Cycle time	5-10ms	5-100ms	0.5-4ms
Synchronization	< ±5%	-	<1µs
Browse		Х	

Technical Track © 2015 ODVA, Inc.

Migration to Ethernet

- Reasons and requirements
 - Data rate insufficient in fieldbusses
 - Eliminate separate interface for commissioning
 - Enable IT integration into devices
 - Web server
 - Diagnostics
 - Change settings
 - Firmware download
 - SNMP
- How to become Ethernet deterministic


Real Time Behavior (1)

- Traditional Ethernet using CSMA/CD is not deterministic
 - Collision is detected and packets are repeated after random time
 - But can be made deterministic by a Master/Slave MAC layer (PowerLink)
- Switched Ethernet and packet prioritization achieves soft real time behavior
 - Packet delay up to 122 µs per hop
 - Still danger of overload and switches not supporting enough priorities
 - Not suitable for synchronized motion
 - Synchronized motion can be achieved using synchronization with IEEE1588
- Ultra low latency and Ethernet
 - Scheduled transfer (TDMA) and multi-device packets (Sercos, Profinet IRT)
 - Future: Time Sensitive Networks (TSN)

Real Time Behavior (2)

Software Architecture

Electric Drives and Controls | 20.06.2012 | DC-IA/PJ-ETH | © Bosch Rexroth AG 2012. Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Market Requirements

Minimum product variation

Future: Individual products in mass production

High variation of products, minimum buffers

Technical Track © 2015 ODVA, Inc. 2015 Industry Conference & 17th Annual Meeting All rights reserved.

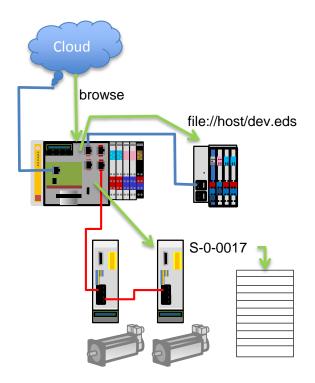
www.odva.org

- Product: card holder
- Product contains individual manufacturing steps and quality data
- Plan to use Machine Data Model of ODVA Machinery SIG

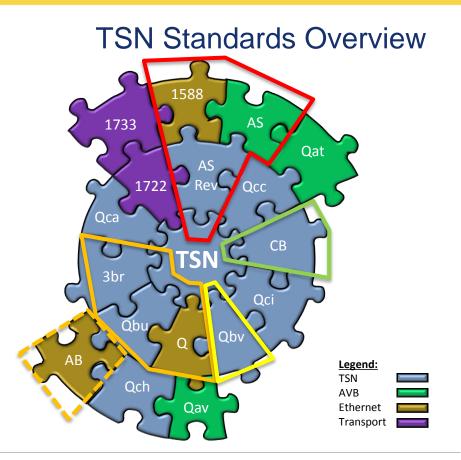
SmartFactory Demo Line

6/23/2015 | Ludwig Leurs | © Bosch Rexroth AG 2015. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Ubiquitous availability of information

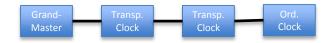

- Every information at any place at any time
- Wireless is the key
 - Already available via mobile devices
 - In some applications also at device level
- CIP is ready
 - Objects and services
 - Bridging and routing
 - Future extension
 - DeviceNet of Things
 - EtherNet/IP in resource constrained devices
 - I/O-Link integration

- IIoT needs information to be found online
- OPC (and OPC UA) offers a browse service
- Industrial systems based on offline configuration
 → EDS files
- Systems originating from online configuration

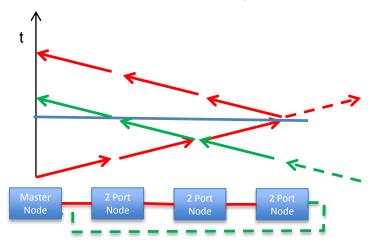

 → built in object directory, e.g. Sercos: S-0-0017,
 Parameter structure contains units, names, data type, …
- Solution: link to EDS from device

Discovery Service

- Set of Standards
- Time Synchronization
 - 1588, 802.1AS, 801.2ASrev
- Latency reduction
 - 802.1Qbu, 802.3br
 - 802.1AB (LLDP)
- Scheduling traffic
 - 802.1Qbv
- Redundancy
 - 802.1CB



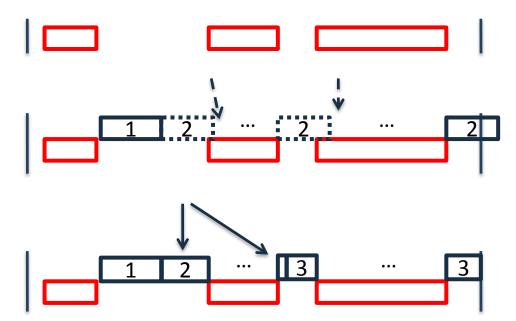
19



- Nearly all systems use some variant of IEEE1588
- Transparent clocks have been introduced to minimize degrading of accuracy over hop count
- Redundancy issues have been solved by sophisticated methods
- Only Sercos uses synchronization by telegram

Time Synchronization

Daisy chain degrades accuracy → Optimum is star topology

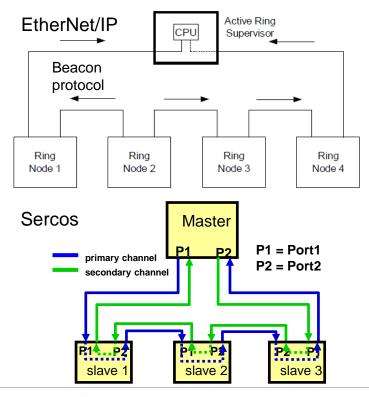


Technical Track © 2015 ODVA, Inc. www.odva.org

Latency Reduction – Frame Preemption

- Long frames can't be interrupted in traditional Ethernet
- Qbu (Frame Preemption) and 3br (Interspersing Express Traffic) solve this
- Maximum delay by low priority traffic can be reduced from 123µs to 12µs @100Mbit/s
- But this still allows this delay to be introduced at each hop

Latency Reduction – Scheduled Traffic


- Problem: large number of hops
 - Scheduling can reduce latency significantly
- IEEE802.1Qbv Time aware shaper
 - Block non-express traffic in the guard window immediately before cycle start
- Only in large networks
 - Probably not in EtherNet/IP
 - Needed in Sercos

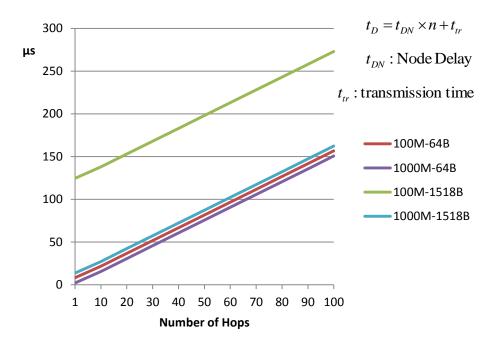
Redundancy

- Industrial networks support redundancy already
- Change to 802.1CB would introduce different procedures
 - Incompatibilities
- No need, if no requirement from application

100Mbit/s versus 1Gbit/s

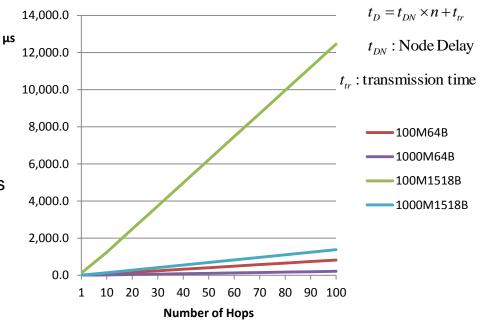
- What happens going from 100 Mbit/s to 1Gbit/s?
 - Transmission speed increases by factor 10
 - Propagation delay stays constant (no increase in speed of light)
 - Signal conversion delay decreases insignificantly

	Packet size	100 Mbit/s	1 Gbit/s	
Transmission time ¹⁾	64	6.7µs	0.67µs	→Topology matters!
	1518	123µs	12.3µs	
Delay per hop ²⁾		1.5µs	1.5µs	

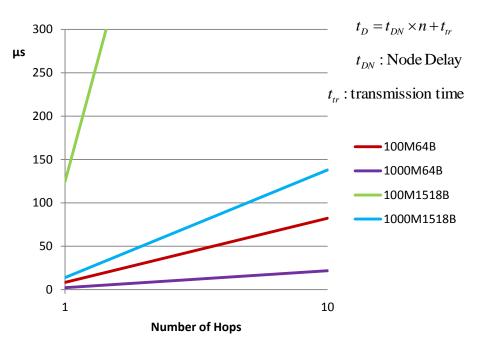

- 1) Including Start of Frame and Inter Packet Gap
- 2) 1 µs node delay and 0.5µs accounting for 100 m cable length

Technical Track © 2015 ODVA, Inc.

100Mbit/s versus 1Gbit/s - cut through


- Total delay with Cut through
 - Transmission time important at 100Mbit/s
 - Node delay dominant at 1Gbit/s

100Mbit/s versus 1Gbit/s - store & forward


- Total delay with store & forward
 - 100Mbit/s:
 - Transmission time dominant for large packets
 - Large number of hops lead to large delay
 - Not useful for closed loop control
 - But for small packets only systems may be acceptable
 - TSN Frame preemption would be helpful
 - 1Gbit/s
 - Small packets: node delay and transmission time in same range

100Mbit/s versus 1Gbit/s - store & forward

- Total delay with store & forward
 - Low number of hops
 - 100Mbit/s:
 - Transmission time still important
 - closed loop control
 - But for small packets only systems may be acceptable
 - TSN Frame preemption would be helpful
 - 1Gbit/s
 - Small packets: node delay and transmission time in same range



- Automation technology developed in several application fields
- Ethernet was introduced for transmission rate and IT connectivity
- ODVA uses COTS technology and supports internetworking in its specification
- CIP is ready for the Industrial Internet of Things
- Discovery service could be added
- When TSN becomes available EtherNet/IP could be easier to apply in time critical applications in the presence of IT traffic
- The formerly separated application fields can be merged into one network (this is already true for EtherNet/IP)

THANK YOU

