Fundamentals of Precision Time Protocol **Rudy Klecka Cisco Systems** October 14, 2015 #### Abstract This session will provide a general background on IEEE 1588 Precision Time Protocol (PTP), how it works, some basic terminology, and its main uses in the market. There will be a discussion on PTP implementations (with a primary emphasis on Industrial products). The session will also touch on other related timing protocols and future enhancements to PTP. Objectives Converse About PTP Basics... Understand the different Time Protocols Understand the various PTP Profiles and Standards Understand how PTP relates to Controls Engineering # "Timing is Everything" Scan-based to time-based control operation # "Timing is Everything" #### Various Time Distribution Protocols # GNSS - Systems Around the World # Why (and Why Not) GNSS... Examples: GPS, GLONASS, COMPASS/BeiDou-2, Galileo, ... - ✓ Nearly globally available - ✓ Traceable to UTC # **One Way Time Transfer Basics** # One-Way Time Transfer (OWTT) Basics # Steps to GPS Time # 1. Frequency Lock to Satellite 1 To Frequency Lock – only t1 & t2 timestamps are needed $$FFO = ((t_2'-t_2)-(t_1'-t_1))/(t_1'-t_1)$$ Continually adjusting your frequency (yellow) until it matches GPS (blue) This gets your cheap Cell Phone oscillator locked to a stable GPS frequency... This will allow you to more accurately measure time differences (up next)... Also note: the Delay here is constant – speed of light through atmosphere # Steps to GPS Time # 2. Find Time Differences of Arrival (TDOAs) $$TDOA S1 - S2 = t2 - t2$$ $$TDOA S1 - S3 = t2 - t2$$ TDOA $$S1 - S4 = t2 - t2$$ ### These differences are Hyperboloids... Note: angles on the arrows are the same as the delays through the atmosphere are the same # Multilateration – Overlapping Hyperboloids It takes the intersection of 3 of the Hyperboloids to narrow it to a single point Source: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5507349 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5507349 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5507349 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5507349 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5507349 http://ieeexplore.ieee.org/stamp.jsp?arnumber=5507349 href="http://ieeexplore.ieee.org/stamp.jsp?arnumber=5507349 <a href="http://ieeexplore.ieee.org/stamp.jsp?arnumber=5507349 Meters matter # Packet Delay Variation (PDV) PDV is primarily due to Varying Queue Delays... Even High Priority packets get behind a 1518 from time to time. The variance comes from the fact that sometimes you do and sometimes you don't. It's all statistics... # Boundary Clocks and Transparent Clocks ## Boundary Clock v. Transparent Clock – Error Sources # Pros and Cons of Boundary Clocks #### **Pros**: - Breaks up the PTP message domain - Breaks up the PTP timing domain - Spans across VLANs - Shields Slaves from Transients due to hierarchy changes (BMCA) - Filters PDV #### Cons: Adds low frequency (wander) time error (hard to filter) # Pros and Cons of Transparent Clocks #### Pros: - Maintains tight timing throughout a domain - Peer-to-Peer TCs can converge faster after network topology changes #### Cons: End-to-End TCs can have scalability issues # Delay and pdelay Mechanisms #### Two Types of TCs: End-to-End and Peer-to-Peer # Peer to Peer Transparent Clock ## PTP Profiles (And the Proliferation of said...) ## Main Current Industrial Profiles | S 20TH ANNIVERSARY 1995-2015 | | | | | |------------------------------|---|-----------------------------------|---------------------------------------|---| | | IEEE 1588-2008
Default (CIP Sync) | IEEE 802.1AS | IEEE C37.238 | ITU-T G.8275.1 | | Segments | Industrial Solutions | AVB
(residential)
TSN | Power Industry (SmartGrid substation) | Telecom Mobile
Backhaul
Substation Backup | | Transport | IP, L2 Ethernet, industrial specifics | L2 Ethernet | L2 Ethernet | L2 Ethernet | | Transmission | Multicast (default) | Multicast
non-forwardable | Multicast
non-forwardable | Multicast
(both address types) | | Delay mechanism | Delay (Annex J.3)
Pdelay (Annex J.4) | pdelay | pdelay | delay | | Clock mode | One- & two-step | Two-step | Two-step | Any | | вмса | Default | Alternate | Default | Alternate | | TLV Extensions | Optional | Yes | Yes | No | | Clocks | OC, BC, TC | time-aware bridge and end station | OC, TC
(BC in future revision) | T-GM, T-BC, T-TSC | | Deployment model | Not defined | Full support | Full support | Full Support
+ PHY layer freq. | ## Performance Specifications | | IEEE 1588-2008
Default (CIP Sync) | IEEE 802.1AS-2011 | IEEE C37.238-2011 | |----------------|--------------------------------------|---|------------------------------------| | Network limits | No | 7-hop network:time accuracyjitter and wander | 16-hop (TC) network | | Clocks | No | LocalClock:frequency accuracytime granularity | TC timeInaccuracy limit +-50 nsecs | | Grandmaster | Frequency accuracy | noise generation TimeAware systems: residence time pdelay turnaround time Error in rate ratio (or frequency offset) measurement | Grandmaster timeInaccuracy limit | ### White Rabbit Sub-nanosecond synchronization! # Real World Impact PTP Errors Translated to Machine Error ## Using Multiple Unmanaged Switches in a Large System... #### **Isolated 16-Axis Star Topology** ## Simulated Network Load – ITU Telecom Profiles #### ITU-T G.8261 – Timing & Sync Aspects in PSNs - Appendix VI.5 Test for Two Way Protocols - Baseline Test (no Network → Master/Slave back to back) - Performance Tests (Network & Load) 0.072 To 0.074 0.076 To 0.078 20 msec/bin 0.00 0 To 0.058 0.068 To 0.07 0.064 To 0.066 0.06 To 0.062 0.08 To 0.082 0.084 To 0.086 0.088 To 0.09 70 To 80 -53 To -40 -30 To -20 -10 To 0 30 To 40 10 To 20 90 To 100 110 To 120 130 To 140 150 and over ## So what do these numbers really mean? #### 16 Axis Star, Linear K6500, Stratix 8000 Switch 16 Axis Star, K350, Stratix 2000 Switch Multiply your application speed by this value to determine position error due to network jitter PanelView I/O Modules Axis 2 Axis 3 Axis 4 Axis 8 Axis 9 Axis 10 Axis 11 Axis 12 Axis 13 Axis 14 Axis 15 Average System Clock Jitter (Max) ~ 7.4 microseconds 0.000000035s x 6000 RPM/60s/min = 0.0000035 Revs $0.0000018s \times 6000 \text{ RPM} / 60s/\text{min} = 0.00074 \text{Revs}$ Note: Sample from Axis 1, off switch 1 Note: Sample from Axis 2 Workstation **THANK YOU**