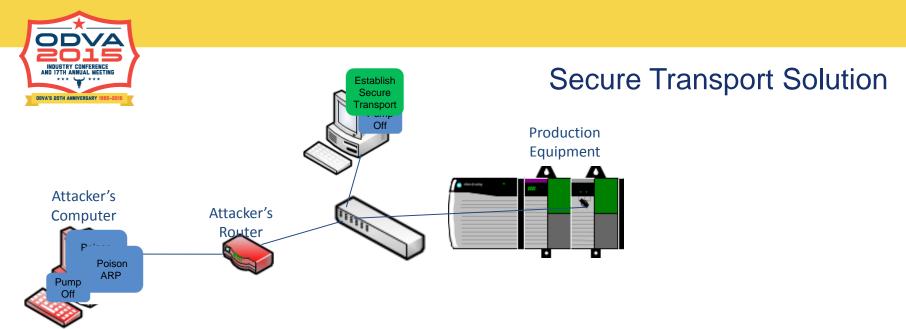

CIP Security Phase 1 Secure Transport for EtherNet/IP


Brian Batke, Rockwell Automation Dennis Dubé, Schneider Electric Joakim Wiberg, HMS Industrial Networks

October 14, 2015

The Need for a Secure Transport

CIP Security Goals

- Reject data that has been altered (integrity)
- Reject messages sent by untrusted entities (authenticity)
- Reject actions that are not allowed (authorization, phase 2)

Specification Enhancements for CIP Security

Specification Enhancements for CIP Security™	General Description	Technical Description
Device Hardening	EtherNet/IP product hardening requirements and recommendations	Protection Mode attribute to Identity Object. Recently updated to include Implicit and Explicit modes
The CIP Networks Library 2015 PC2	Secure communications between EtherNet/IP endpoints: data integrity, data confidentiality, and device authenticity	EtherNet / IP over TLS for UCMM and Class3 EtherNet / IP over DTLS for Class 0/1 Security is only assured on Ethernet
The CIP Networks Library 2017+	Secure <u>end-to-end</u> communications between <u>CIP</u> endpoints: data integrity, device and <u>user</u> authenticity	CIP enhancement to support user and device authentication along with device access policy enforcement (authorization)

CIP Security Features

Security Properties	CIP Security™ (2015)	CIP Security™ (2017+)
Device Authentication	(Ethernet device)	$\sqrt{\text{(CIP device)}}$
Device Trust Model	Broad (group(s) of trusted devices)	Narrow (individual trusted device or app)
Device Identity	$\sqrt{\text{(PSK or X.509 Certificate)}}$	√ (TBD)
Integrity	(Ethernet transport layer)	(CIP application layer)
Confidentiality	\checkmark	√ (TBD)
User Authentication		\checkmark
Change Detection (Audit)		√ (CIP device)
Policy Enforcement (Authorization)		\checkmark

CIP Security Profiles

EtherNet/IP Integrity Profile:

Provides device authentication and data integrity of packets on Ethernet networks.

EtherNet/IP Confidentiality Profile:

Provides confidentiality to data in transit

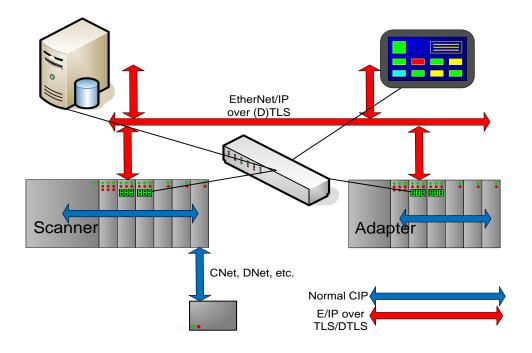
(Adds Confidentiality to EtherNet/IP Integrity profile)

CIP Authorization Profile:

Provides user & device authentication and device access policy enforcement (authorization)

CIP Integrity Profile:

Provides end to end data integrity at the CIP application layer (Adds CIP Integrity to the CIP Authorization profile)



Phase 1 Solution Summary

- TLS (TCP) and DTLS (UDP) provide the secure transport
 - Same approach as HTTPS: HTTPS = HTTP over SSL/TLS
 - Secure EtherNet/IP = EtherNet/IP over TLS and DTLS
 - Same EtherNet/IP, but over a secure transport

CIP Security P1: EtherNet/IP over TLS/DTLS

Phase 1 Solution Summary

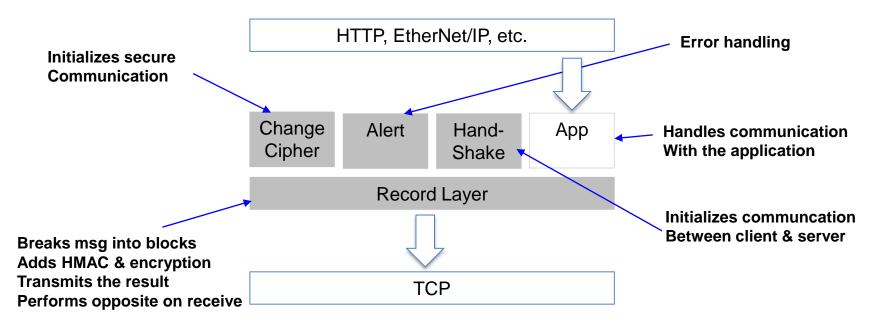
- What is TLS?
 - "Transport Layer Security"
 - Defined via RFCs: RFC 5246 for TLS; RFC 6347 for DTLS
 - Related RFCs for X.509 certificates, cipher suite definitions, etc.
 - Standard protocol, widely used to secure Internet traffic

Bottom line: We don't have to invent the secure transport We just use it for EtherNet/IP

TLS Architecture

Establish a session

Agree on algorithms, share secrets, perform authentication


Transfer application data

Ensure privacy and integrity

Handshake	Change	Alert
Protocol	Cipher Spec	Protocol
TLS Record Protocol		

TLS Architecture

CIP Security Layers

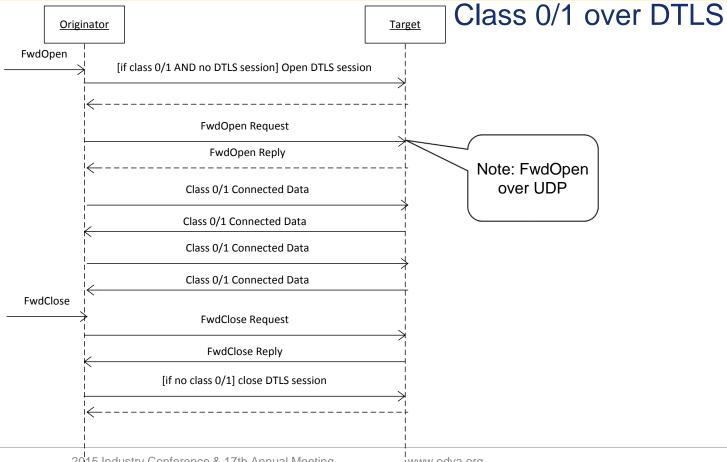
CIP Application CIP I/O Application (including objects) UCMM / Class 3 Class 0/1 EtherNet/IP Encapsulation EtherNet/IP Common Packet Format Transport Layer Security (TLS) **DTLS** TCP UDP Internet Protocol (IP)

CIP Security Capabilities

Prevent

untrusted

comms


- Only trusted entities (device or s/w app) able to connect. Two trust options:
 - Pre-Shared Keys (PSK), configured in originator and target
 - X.509 Certificates, with common root authority
 - In both cases, both originator and target verified
- Message integrity and authenticity
 - Provided by HMAC on (D)TLS packets.
 - Includes anti-replay
- Optional message encryption
 - Will be a user choice (performance impact)

Volume 8 Content

Chapter 1: Introduction

Chapter 2: <currently empty, expected to be CIP Security>

Chapter 3: EtherNet/IP Security

Chapter 4: Configuration and Commissioning

Chapter 5: Object Library

Chapter 6: Security Profiles

Chapter 7: <currently empty, expected to be EDS Files>

Chapter 8: Certificate Management

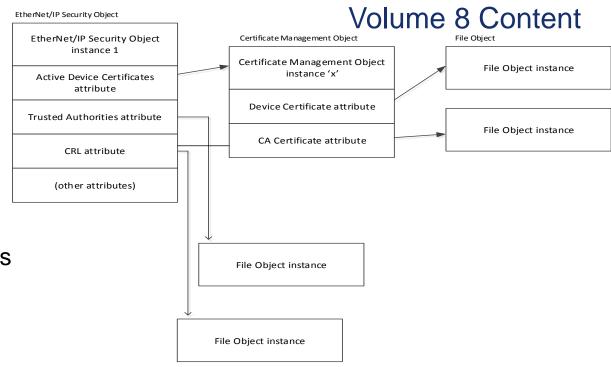
Volume 8 Content

- Behavior of EtherNet/IP over TLS and DTLS (Chapter 3)
 - New port number (2221 for both TCP and UDP, registered with IANA)
 - Required (D)TLS cipher suites
 - New CPF message for FwdOpen over UDP (in Volume 2, Chapter 2)
 - Originator and target behavior with respect to (D)TLS
 - Multiple connections, sequence number rollover, etc.

Cipher Suites

ODVA'S 20TH ANNIVERSARY 1995-2015	
Cipher Suite	Description
TLS_RSA_WITH_NULL_SHA256	RSA for key exchange; null encryption; SHA256 for message integrity.
	Encryption not provided.
TLS_RSA_WITH_AES_128_CBC_SHA25	RSA for key exchange. AES 128 for message encryption, SHA256 for message
6	integrity.
TLS_RSA_WITH_AES_256_CBC_SHA25	RSA for key exchange. AES 256 for message encryption, SHA256 for message
6	integrity.
TLS_ECDHE_ECDSA_WITH_NULL_SHA	ECDHE_ECDSA for key exchange; null encryption; SHA1 for message integrity.
	Encryption not provided.
TLS_ECDHE_ECDSA_WITH_AES_128_C	ECDHE_ECDSA for key exchange. AES 128 for message encryption, SHA256
BC_SHA256	for message integrity.
TLS_ECDHE_ECDSA_WITH_AES_256_C	ECDHE_ECDSA for key exchange. AES 256 for message encryption, SHA256
BC_SHA384	for message integrity.
TLS_ECDHE_PSK_WITH_NULL_SHA25	ECDHE in conjunction with PSK for key exchange; null encryption; SHA256 for
6	message integrity. Encryption not provided.
TLS ECDHE PSK WITH AES 128 CBC	ECDHE in conjunction with PSK for key exchange. AES 128 for message
SHA256	encryption, SHA256 for message integrity.
_311AE30	end yphon, June 20 for message integrity.

CIP Security Object


 Exclusivity during commissioning

EtherNet/IP Security Object

 Configuration of TLS/DTLS related settings

Certificate Management Object

 Interface to get/set certificate and related files

Volume 8 Content

- Certificate management requirements / recommendations
 - Vendor certificate recommended (802.1AR)
 - Self-signed default certificate if no vendor cert
 - Key generation and storage considerations
- CIP Security profiles
 - Defined groupings of capabilities
 - Will drive conformance test

... But will it work?

- Several vendors have prototype implementations
 - UCMM / Class 3 over TLS
 - Class 0 / 1 over DTLS (partial implementation)
- Possibility of multi-vendor prototype interop event
 - Tentative
 - More participants welcome!

Next steps

CIP Security Phase "1.5"

- Certificate enrollment via standard protocol (EST required, SCEP optional)
- Multiple certificate support
- Investigate secure multicast support

CIP Security "Phase 2"

- CIP level authentication and authorization
- Users and devices
- Will require further input and scoping with ODVA Security Task Force

THANK YOU

