
2014 ODVA Industry Conference 1 ©2014 ODVA, Inc.

Application and System Diagnostic Framework on CIP™

Joakim Wiberg
Manager Technology and Platforms

HMS Industrial Networks

Presented at the ODVA
2014 Industry Conference & 16th Annual Meeting

March 11-13, 2014
Phoenix, Arizona, USA

Abstract:

The requirements for diagnostics in industrial control applications have grown continuously over the last decade and
have become a critical requirement for many industrial control applications. This paper describes a conceptual
scalable and highly flexible diagnostic framework for application and system diagnostics, to be deployed in end
devices and in diagnostic aggregator devices. Diagnostic aggregators make it possible to collect and store the
diagnostic information for a subnet and provide that information to higher level supervisory diagnostic system tools
sitting on upper level plant network(s). The proposed diagnostic framework is based on existing CIP™
communication mechanisms and also extends existing mechanisms to adapt the Heartbeat diagnostic notification to
EtherNet/IP™.

High level alarms, warnings, and event flags are generated by the end device in Device Heartbeat notification
message, with the more detailed diagnostic data of interest for the device logged and stored within the product. The
diagnostic data stored within a product are accessible in a standard way using CIP™ communications and objects.
This allows cross vendor platforms to be used to analyze and diagnose the information details after receiving a
Device Heartbeat notification from an aggregator. Enhancements to the EDS make it possible for supervision
systems to map and present internationalized text strings for all events with little resources needed in end devices.
Higher level end devices with more memory resources have the option to store all the texts strings associated with
events internally.

Keywords:

Diagnostic, Scaled Architecture, Information Modelling, EDS, Common Architecture, Event Logging

Introduction

For years, the EtherNet/IP™ Implementor Workshops have discussed diagnostics on different levels for
EtherNet/IP™ and CIP™. The initial discussions where mainly focused on how to troubleshoot and diagnose
Ethernet and TCP/IP networks, in order to detect problems with the communications and initial commissioning. As
a continuation of this effort, it was also identified that CIP™ did not provide a common and generic way to log and
present application diagnostic information and events.

In the European Series of the EtherNet/IP™ Implementor Workshops, the lack of a common and generic way to log
and present application diagnostic information and events for EtherNet/IP™ and CIP™ was identified and discussed
as a topic in several of the EtherNet/IP™ Implementor Workshop events. As a consequence of this, a working group
was formed with the intention to develop and extend EtherNet/IP™ and CIP™ with functionality to allow devices to
log and present diagnostic information in a generic way. The working group did some work in the area, but for a

2014 ODVA Industry Conference 2 ©2014 ODVA, Inc.

variety of reasons the effort fell short and no additions to EtherNet/IP™ and CIP™ where developed in order to
address the identified issue.

Most users of industrial control applications expect diagnostics and event logging to be an integrated part of the
devices being installed on the plant floor. Using diagnostics and event logging as a part of the automated production
is important to increase the flexibility of the manufacturing system, maximize the investment turnover, and
minimize the overall downtime. This can be archived when devices implement and provide a full set of diagnostic
and event logging functionality along with a framework to report and publish the logged diagnostic information and
events. Examples of diagnostic information that helps maximize the investment turnover and minimize the
downtime could be a misaligned photo-eye reporting and therefore would need a service technician to correct its
position or a motor that has been used at a certain load over a defined number of hours and therefore should be
scheduled for service.

Devices collecting and reporting diagnostic information and events are by no means anything new. In fact, devices
have reported diagnostics long before they became equipped with network connectivity. Though the real use and
advantages of collecting and reporting diagnostics and events came along with the network connectivity, several
fieldbus networks have since long had standardized and defined means to report diagnostic information and log
events. Since this diagnostic information are reported and collected using a standardized function in the fieldbus
communication, it is vendor neutral and allows it to be used in multi-vendor networks.

As industrial communication started adopting Ethernet and TCP/IP for control and to transport data, diagnostics
have become yet even more important since this makes it easier gather the diagnostic information and tie that into
higher layer supervision systems. The fieldbus networks already providing functionality to collect and report
diagnostic information brought this functionality over when the Ethernet and TCP/IP counterparts where created and
developed.

EtherNet/IP™ and CIP™ do not totally lack diagnostic functionality. Though the functionality that EtherNet/IP™
and CIP™ offer currently has some shortcomings. The diagnostic functionality that is defined as a part of the CIP™
Networks Library is limited and narrow. In this case the diagnostic functionality is bound to a specific type of
product, e.g. an I/O block or a photoelectric sensor, but in these cases the functionality is very narrow and does not
allow for different types of events and diagnostics to be reported. In the cases where enough diagnostic and events
are provided, the functionality has been developed in a vendor specific way by each vendor. This make multi-vendor
networks a big effort to build, and mixing devices, from different vendors, that have the best fit and functionality for
that specific installation impossible. In those cases it is not possible to used one single engineering software tool to
gather collect and present the diagnostics and event information. This is far from an ideal way of working since the
service technician will have to learn and use multiple software tools, also the engineer building and commissioning
the network will have to use more than one engineering tool to fully make use of the information from all devices.

Having a generic framework that allows for devices to provide diagnostics and event logging in a common way is
important in order to create multi-vendor networks and installations and at the same time provide an elaborated
diagnostics and information gathering functionality. This generic framework also is important to create
interoperability making sure devices from different vendors play well together. Using defined means to log and
present diagnostic information and events is important for end-users and engineers building the industrial control
application since they then can choose the device with the best fit for their specific application. Also, it provides
means for vendors to differentiate themselves from other vendors by implementing a wide and broad set of
diagnostics and event logging functionality and not have to be tied and bound using their own tools to fully make us
of the information.

It is of a high importance that a framework for diagnostics and event logging is flexible enough to make it possible
to log any form of application and system diagnostic data that can be useful. Furthermore, it must not be limited to
application and system diagnostic data, any form of information that could be of use for a device or an end user
should be possible to be logged and presented in a generic way by the framework. Having a framework that is
flexible enough this will allow for any type of information to be logged in the future. An example of events that
could be logged that are not of application type are security related events, like when the normal operation is about
to be compromised. It also could be possible to log information taken from the Energy objects when an energy
consumption peak has been detected. Besides making the framework flexible enough to allow for logging of any

2014 ODVA Industry Conference 3 ©2014 ODVA, Inc.

type of diagnostics, events, and data, it must be well defined in order to maximized the interoperability and allow for
multi-vendor installations.

This paper presents a diagnostic framework that allow vendors to implement any kind of device or application
diagnostics, such as short circuits, misaligned photo eyes, over current detection, or operating thresholds meet.
Because of its flexibility it also provide means to aid system and network diagnosis. However the framework does
not define any attributes or figures that would guide a user through a system and network trouble shooting, this is
outside the scope of the paper and needs to be developed on top of the functionality that the framework presented.

Throughout the document EtherNet/IP™ is used as an example network, the diagnostic framework and most things
in the paper is not limited to EtherNet/IP™. It could be adapted to any CIP™ network technology. In fact some of
the ideas already exists on DeviceNet™ and are based on the functionality of that network.

Conceptual overview

The remainder of this paper will present and focus on a suggested framework for the application and system
diagnostics. It will present all components in the framework as a whole, discussing devices, aggregators, engineering
stations used to present and display the diagnostics and events, and also other possible system components. Some
design details will be described and discussed, though the focus of the paper is to give a high-level overview.

What components and devices would make use of the application and system diagnostic framework? Consider the
simple network in Figure 1. This could be any EtherNet/IP™ network comprising a controller controlling, a set of
I/O devices and AC drives, and also connected to the network is a HIM to present the current operation and to make
changes to the operation. The PC connected to the network could be an engineering station to program the controller
or a supervisor station used to monitor the operation in a control room. The device to the top right would represent
something that normally not would be found on an EtherNet/IP™ network, a portable diagnostic tool.

Figure 1 Simple Example Network

The I/O devices and the AC drives are the devices that would implement the diagnostic and event reporting
functionality. When an event occurs or the device has something to report, it would log that information and make
the information available through an object. The event will be tagged with information based on the type and
importance. For example, a critical event would be a short circuit detected in one of the terminals on the I/O block,
when the drive has reached a certain number of operation hours an information event would be logged. Once the
diagnostic information has been logged the device will produce a Device Heartbeat message to report that it has new
diagnostic information. This Device Heartbeat message is sent out in a way allowing any device to see and pick up
the message.

2014 ODVA Industry Conference 4 ©2014 ODVA, Inc.

When the HMI receives the Device Heartbeat message, it would use explicit message communication to read up
diagnostic information from the device that produced the Device Heartbeat. Since the events have been tagged with
information about their importance and type, the HMI could be set in a way to filter different events based on their
importance and type. The operator of the machine might not be interested that the drive has passed a certain
threshold for the number of operation hours and would need a service scheduled, but a short circuit might be of high
importance since it might stop the operation.

The supervisor station might be interested in using the same information as the HMI, but also might add history and
trending for relevant information. It also might be the station that informs the maintenance personnel to schedule a
service for the motor that has passed the operational hour threshold.

A controller that has been set up to receive diagnostic Device Heartbeat messages could be configured to take action
based on the event that occurred. An example could be the short circuit which might stop operation of that specific
cell, but still maintain operation of other cells not affected by the short circuit event.

The portable diagnostic tool, e.g. a laptop or a dedicated hand-held, can be connected to the network when a service
engineer would need to trouble shoot something, or during initial commissioning to make sure that the network is
correctly installed and configured. This portable diagnostic tool would be able to pick up any Device Heartbeat and
present the information without knowing anything about the network structure or layout or the specific device
reporting the event. This would be accomplished by interrogation of the standardized diagnostic object where the
events are logged in each device that has diagnostics to report.

Below Figure 2 shows a conceptual network layout where devices with an aggregation function, an Aggregator,
resides on different sub-networks. Each Aggregator listens to Device Heartbeat messages on the local sub-network
and collects diagnostic information from the devices on the sub-network.

The sub-networks could be actual physical networks structured as such, but it also could be a logical network to
structure and assemble the diagnostic information in one or several devices. When the Aggregator is used to build up
a physical network, it is located in a CIP™ Router that collects diagnostic data from downstream devices and
presents the data to upstream devices. An Aggregator in a logical network could be a single port device that collects
the data and presents the data on the same physical interface. The use of this kind of device is to have all diagnostic
data collected and assembled in one single point on the network. This kind of device could be a Controller.

2014 ODVA Industry Conference 5 ©2014 ODVA, Inc.

Figure 2 Conceptual Network Layout with Aggregators

The Aggregators also would act as Device Heartbeat producers when they have collected data from devices from
where they aggregate data. Once the Aggregator has consumed a Device Heartbeat message from a device, it stores
that information in an aggregated diagnostic object. The aggregated diagnostic object holds all Device Heartbeat
messages, which the Aggregator has collected, together with some additional information. When the Aggregator has
stored the information from the Device Heartbeat message it produces a Device Heartbeat message of its own
allowing other Device Heartbeat consumers to see that it has new diagnostic information available.

Along with the information in the Device Heartbeat message, the Aggregator stores the path to the device that
produced the Device Heartbeat message. Using this information, devices higher up in the hierarchy can drill down
through the segmented network hierarchy. If the Aggregator is implemented in a CIP™ Router, it also makes it
possible to reach to devices sitting on different CIP™ Networks.

2014 ODVA Industry Conference 6 ©2014 ODVA, Inc.

Collecting data using Aggregators and having the local diagnostic from one sub-network concentrated in one single
point makes it easy to structure the network. Also having the diagnostic data assemble in one single point a network
makes it easier for devices sitting on higher layers to gather data from devices on lower layers.

Device Heartbeat messages

In order to have a way for a device on EtherNet/IP™ to distribute and publicize that there has been a change in its
current state and that new diagnostic or event information exists to more than one recipient, an extension to the
EtherNet/IP™ protocol needs to be developed. A Device Heartbeat message similar to the one available on
DeviceNet™ needs to be defined. This message needs to be short, unsolicited, unconnected, and generated by the
device. As shown in Figure 3, the Device Heartbeat message shall be sent by any device that has diagnostics or
events to report, hence the unsolicited and unconnected nature it can be consumed by any device interested in doing
so.

Figure 3 Device Heartbeat Messages

The Device Heartbeat could be sent as unicast, multicast, and broadcast. There are pros and cons with each of the
three different delivering methods.

Unicast has the advantage that it reduces the bandwidth utilization and does not load the network with traffic on
segments where there are no consumers of the message. The drawback that comes with unicast is that each and
every potential consumer would have to be configured in the Device Heartbeat producer. This is a manual and rather
cumbersome process, especially if the network in question contains a large number of nodes that will produce
Device heartbeat messages. It also prevents easy usage of diagnostic devices that are plugged into the network
temporarily to diagnose a potential issue.

Broadcast messages overcome the issue where each and every Device Heartbeat message producer has to be
individually configured. However, it has the limitation that it “floods” the network with unnecessary traffic since
each Device Heartbeat could be sent on every link in the system regardless if there is a consumer or not.

Multicast by default shares the same pros and cons as broadcast. But using IGMP snooping aware switches the
unnecessary traffic would be reduced and only sent on links where there is an actual consumer of the Device
Heartbeat message. For IGMP snooping to fully work, it is not only the switches that have to support IGMP, but the

2014 ODVA Industry Conference 7 ©2014 ODVA, Inc.

Device Heartbeat consumers would have to implement the IGMP protocol. The Device Heartbeat consumers via
IGMP would inform the switches that expects multicast on a specific address to be sent down its link.

The preferable deliverable mechanism for Device Heartbeat messages on EtherNet/IP™ would be to use multicast
and this in conjunction with IGMP support in the Device Heartbeat consumers. The usage of multicast in
combination with IGMP snooping aware switches and support for IGMP in Device Heartbeat consumers reduces the
traffic to only be sent on ports where the messages will be consumed. Furthermore, if there is more than one
consumer, which is a likely configuration in a larger network with hundreds of nodes of the Device Heartbeat
messages, only one single message will be sent. This message will be consumed by all Device Heartbeat consumers
which decreases the bandwidth utilization even further. In addition, the Device Heartbeat messages are sent at a
slow background rate, so even in smaller systems without IGMP snooping aware switched the bandwidth utilization
would be slow. Multicast combines the ease of ease of configuration with the possibility to optimal make use of the
bandwidth by using the correct infrastructure components.

Using IP Multicast would require the Device Heartbeat messages to be sent over UDP. The Device Heartbeat
messages would be sent on the UDP port registered for EtherNet/IP™ Encapsulation Protocol. For Device Heartbeat
Consumers to distinguish between Device Heartbeats and other data sent on the same UDP port, a new
encapsulation command needs to be defined. The actual Device Heartbeat data would be a part of a Common Packet
Format following the Encapsulation Header and a new Item ID number would need to be defined for the Device
Heartbeat Information. Table 1 shows how the Encapsulation Header and the Common Packet Format would be laid
out.

Structure Field Name Data Type Field Value
Encapsulation
header

Command UINT Device Heartbeat
Length UINT Length of the command specific data
Session handle UDINT Any value (ignored by receiver).
Status UDINT 0
Sender Context ARRAY of octet Value from request. Length of 8.
Options UDINT 0

Command
specific data

Item Count UINT Number of target items to follow
Target Items STRUCT of Device Heartbeat Information

 UINT Item ID
 UINT Item Length
 ARRAY of
octet

Item Data

Table 1 Encapsulation Header

2014 ODVA Industry Conference 8 ©2014 ODVA, Inc.

To confine the Device Heartbeat traffic to the local network, it is recommended that TTL scoping is used. In the IP
header a field called Time To Live (TTL) is defined, see Figure 4. This field defines the lifetime of the frame and
how far it can travel. Despite the name, it is really a count of the number of hops (transmission from one router to
the next) the packet is allowed. The TTL field is decremented by one each time a packet leaves a router and a packet
with a TTL of zero is discarded. Setting this TTL filed to a value of one (1) would limit to the scope of the local
network.

Version IHL Type of Service Total Length

Options

Flags Fragment Offset
Time to Live Protocol Header Checksum

Source IP Address
Destination IP Address

Identification

Padding

0 43 87 1615 31

Figure 4 IP Header showing TTL

TTL scoping is used also used when sending EtherNet/P packets via IP multicast, in this case the TTL value is
configurable to allow the traffic to traverse across IP multicast routers. There are use cases for Device Heartbeat
messages to traverse IP multicast routers as well. The same attribute that configures the TTL value for
EtherNet/IP™ packets could be used for Device Heartbeat, however since the Device Heartbeat messages and
general EtherNet/IP™ multicast packets are used for vast different things it is more flexible to have a separate
attribute that configures the TTL for Device Heartbeat messages. Table 2 shows how the Device Heartbeat TTL
Value attribute would look implemented in the TCP/IP Interface Object [1].

Attr ID Need in
Implem

Access
Rule

NV Name Data
Type

Description of
Attribute

Semantics of
Value

<snip>
13 Conditional1 Set NV Device

Heartbeat
TTL Value

USINT TTL value for
Device
Heartbeat
messages

Time-to-Live value
for IP multicast
packets.
Default value is 1.
Minimum is 1;
maximum is 255

Table Footnotes
1 Required if the device can produce Device Heartbeat messages

Table 2 Device Heartbeat TTL Value Attribute in TCP/IP Interface Object

The usage of IP Multicast messages is similar to how the Device Heartbeat messages work on DeviceNet™.
Although on CAN, every message can be seen by any node as it is a shared medium. To accomplish this on
EtherNet/IP™ that uses Ethernet and the TCP/IP suite as a carrier for its messages, an IP Multicast message over IP
needs to be used. A new IP multicast address, besides the ones already defined for Class 0 and Class 1 usage, would
be allocated from the IPv4 Organizational Local Scope to be used for Device Heartbeat messages. EtherNet/IP™
today defines two mechanisms to allocate IP Multicast addresses, algorithm based on the device’s IP address or
manual configuration through an attribute in the TCP/IP Interface Object. For EtherNet/IP™ Class 0 and Class 1
data, a range of IP multicast addresses is allocated per device. For Device Heartbeat the normal case would be to use
the same IP Multicast address for all devices. Therefore, a default IP IPv4 Organizational Local Scope needs to be
defined. There are, however, cases when different groups of Device Heartbeat produces would be needed on the
same sub-network. This makes it possible to virtually segment the network. To allow for this, a new attribute would
be required in the TCP/IP Interface Object. Table 3 shows an example how this attribute could be defined.

2014 ODVA Industry Conference 9 ©2014 ODVA, Inc.

Attr ID Need in
Implem

Access
Rule

NV Name Data
Type

Description of
Attribute

Semantics of
Value

<snip>
14 Optional Set NV Device

Heartbeat
Multicast
Address

UDINT The device’s IP
Multicast
Address for
Device
Heartbeat
Messages

IP Multicast
Address (Class D).
A value of 0
indicates that the
default IP Multicast
Address is used.

<snip>
Table 3 Device Heartbeat Multicast Address Attribute in TCP/IP Interface Object

The Device Heartbeat message would also be sent as Change-of-State in order to speed up the delivery and
notification when data changes or new diagnostic and event information has been produced. The main reason for
this is that the heartbeat interval that is configured through the Heartbeat Interval attribute in the Identity Object is
set in seconds. The current Heartbeat Interval configuration attribute does not contain any settings to configure an
inhibit time for the Change-of-State productions. An inhibit time would need to be defined to prevent flooding the
network with Device Heartbeat messages during short periods of many changes. However, it does not make sense to
burden the user with this inhibit time as a configurable attribute. Instead, the inhibit time for Device Heartbeat
messages will default to ¼ of the heartbeat interval. This is a change to the current definition of the Device
Heartbeat Message production rule, which states that the Device Heartbeat at a maximum can be produced once per
second.

Even though UDP can carry a lot more data than a single CAN frame, there is no reason stuffing the full diagnostic
information within the Device Heartbeat message. Rather, it would be preferable to build on the information from
the DeviceNet™ heartbeat message. The DeviceNet™ heartbeat message format carries some information (source
MAC_ID and DeviceNet™ UCMM service code) that is not relevant for an EtherNet/IP™ device since that is the
equivalent to the Encapsulation Header and Common Packet Format discussed above, so that will not be included.
However, each Device Heartbeat in the structure will need some “path” information so that tools subscribing to the
aggregation can drill down to the node reporting Change-of-State to obtain more detailed information about the
diagnostic event(s).

This way, the diagnostic notifications would work in a similar fashion on both DeviceNet™ and EtherNet/IP™
allowing for generic CIP™ diagnostic tools to be used on both networks, and allow EtherNet/IP™ to DeviceNet™
Routers with the aggregation function to collect Device Heartbeats on DeviceNet™ and easily put them in the
EtherNet/IP™ Device Heartbeat message that would be the basis of the aggregation structure on EtherNet /IP. To
make it easier for Device Heartbeat consumers to detect changes a Heartbeat Sequence Count have added, the
counter would be incremented by one when something in the Device Heartbeat message changes. Also, as UDP isn’t
a guaranteed delivery mechanism, messages can get lost or not be processed by the recipient if there is a heavily
loaded network. Lost messages could be detected and dealt with using the Heartbeat Sequence Count. Removing
and adding this information would give a proposed message format as in Table 4. The content of the remaining
information is identical to the trailing information in the DeviceNet™ heartbeat message, as defined in [2], except
from one member. There is a desire to define more flags to help identify different types of diagnostics and events.
Therefore, the existing DeviceNet™ heartbeat message has been extended with one byte of reserved flags. Possible
flags could be for security, maintenance, information event, warning events, and critical events. Since the extra byte
of flags breaks word alignment, an extra reserved byte have been put in after the flag section to make the following
data on an even word.

The MA flag is intended to be used when a condition in the device exists that is classified as maintenance would be
required. Normally this event does not necessarily require stopping the machine and/or the process being controlled.
A typical example could be a “life cycle counter exceeded” indication on a motor starter, a dirty lenses on a photo
eye, and so forth.

2014 ODVA Industry Conference 10 ©2014 ODVA, Inc.

Four vendor specific bits, VS0 through VS3, have been defined. Those bits are connected to one instance in the
Diagnostic Object described below. When a device has some type of diagnostic to report that does not fit into one of
the defined bit, it is still possible to report this kind of diagnostics using the Device Heartbeat message. Consumers
of the Device Heartbeat can from the vendor specific bits get the same information as if it were a defined diagnostic
type but interrogating the Diagnostic Object.

A new flag has been defined, AH (Aggregated Heartbeat), when this flag is set the Device Heartbeat messages have
been produced by an Aggregator and isn’t the original Device Heartbeat message. When the AH flag is set, the
Device Heartbeat message contains additional information besides what is in a Device Heartbeat message produced
by an end device. At the end, there are three optional fields that are included when the AH flag is set, including the
path to the device who originally produced the Device Heartbeat and the instance number of the object in the
Aggregator that produced the aggregated Device Heartbeat.

 7 6 5 4 3 2 1 0
0

Heartbeat Sequence Count
1
2

Identity Object Instance ID
3
4 Device State
5 Severity Level
6 AH Reserved Reserved Reserved VS3 VS2 VS1 VS0
7 Reserved Reserved Reserved MA EV SF UF DF
8

Configuration Consistency Value
9
10

Device Heartbeat Instance ID (included if AH flag is set)
11
12

Path Size (included if AH flag is set)
13
14

Padded EPATH (included if AH flag is set)
N

Table 4 Device Heartbeat Message structure

The Severity Level member holds a value defining the importance of the event and corresponds to the Severity
Level member in the Diagnostic Object.

Not shown in Table 4 is that extra space would probably need to be allocated for a new alternative to the
Configuration Consistency Value. The current definition of the Configuration Consistency Value is weak; therefore
potentially the same value could be generated for different configurations. Also, there is no algorithm defined that
will be used generating the Configuration Consistency Value, a more robust and well-defined algorithm would have
to be defined. Preferably, an existing and proven solution like a Universally Unique Identifier (UUID) would be
used. A UUID is larger than the two bytes used by the Configuration Consistency Value, and more space in the
Device Heartbeat message would have to be allocated to transfer the UUID. A new attribute to hold the UUID
would also have to be defined. This UUID attribute similar to the Configuration Consistency Value also would be
placed in the Identity object.

2014 ODVA Industry Conference 11 ©2014 ODVA, Inc.

Aggregator

As shown in Figure 5, a device with an aggregation function (Aggregator) would reside on each sub-network and
listen for Device Heartbeats, collecting them into a structured array. Aggregators also could aggregate heartbeat
structures from other aggregators lower in the architecture. At the upper layers, PCs or other devices with a
maintenance and/or diagnostic interest can subscribe to these collected heartbeats via a Class 0 or Class 1 Change-
of-State unicast connection.

Figure 5 Aggregators in a layered network

The Aggregators on level A1 in Figure 5 collect the diagnostics and events from different sub-networks and
aggregate the diagnostic information at subnet level. The A1 level Aggregator is normally the controller or PLC that
controls the devices on the subnet or logical subnet. The diagnostic information can come from a Device Heartbeat
as described above, or it also could be a part of the I/O connection between the controller and the device.

2014 ODVA Industry Conference 12 ©2014 ODVA, Inc.

Aggregation can occur a layer above level A1 as well. In Figure 5, this corresponds to the A2 level. The normal
operation for an A2 Aggregator is to collect the aggregated diagnostics from A1 Aggregators. But aggregators on
the A2 level can reach below the subnet aggregation as necessary. If the A2 Aggregator and the device producing
the diagnostics are on the same physical network, the Device Heartbeat messages or I/O connection can be directly
brought into the A2 Aggregator. If the two are on physically different networks, the A2 aggregator can listen to
aggregated Device Heartbeats as from A1.1 and A1.3, or as in A1.2, a CIP™ Router that supports bridged I/O
connections. In the case of a CIP™ Router that supports bridged I/O, it creates a connection directly to the end
device. A1.1 is an Aggregator that supports both DeviceNet™ and EtherNet/IP™, and aggregates Device Heartbeat
messages from DeviceNet™ to the upper layer EtherNet/IP™ network. On the EtherNet/IP™ side, it can beside the
Device Heartbeat also present the diagnostics via an I/O connection.

Aggregation of aggregators can roll up to a system level as in A3.1. From the rolled up system level aggregation in
the A3 level, a PC running a diagnostic and analyzing tools their information about the whole system of sub-
networks and devices below.

Device Heartbeat message would be put inside an assembly instance. This assembly instance would be required in
some sense to be of a variable size since the EPATH member of the Device Heartbeat message can vary in length.

One concern that needs to be considered when building larger networks that aggregate a lot of data is the amount of
traffic that could flow up to the top level PC running the diagnostic and analyzing tools. In large systems were there
are few or almost no events in the end devices the amount of traffic at the top would be low, thus causing no issues.
For larger systems with a lot of events coming and going, the traffic on the trunk line at the top, between the PC and
top level Aggregator, would be high. Though the bottle-neck for the aggregated traffic would be the top level
Aggregator’s internal resources. The Aggregator would run out of resources and performance collecting the
incoming Device Heartbeat messages, storing them in the Aggregator Object, see below, and send out the
aggregated Device Heartbeat messages. The top level PC would not get starved keeping up collecting the aggregated
Device Heartbeat messages, nor would the bandwidth between the two be insufficient. In the case when the top level
Aggregator would run out of resources the network could be segmented differently, see Figure 6, by using more than
one top level Aggregator. The top level Aggregators would then share the load collecting Device Heartbeat
messages from the system, and therefore would address the starving issue when using just one Aggregator. The two
top level Aggregators would be connected through a Gigabit switch making sure that the network bandwidth is
sufficient between the PC and the top level Aggregators. The network can be structured in ways allowing numerous
top level Aggregators making sure that this is not the bottle-neck, instead the top level PC potentially could be the
weak link in the system. Though if this would be the case then the number of Device Heartbeats would be in the ten-
thousand, or even hundred-thousand, range. In case of systems this large there would most likely be more than one
top level PC running the diagnostic and analyzing tools, and therefore they also could share the load by collecting
Device Heartbeat massages from different Aggregators.

2014 ODVA Industry Conference 13 ©2014 ODVA, Inc.

Figure 6 Aggregators used to share a high network load

The Aggregator collects and stores the Device Heartbeat messages in an object, the Aggregator Object. This is a
rather simple object that in the instances just has one attribute which is the received Device Heartbeat. See Table 5.
The Heartbeat Sequence Count is used by the Aggregator to determine if the received Device Heartbeat contains
new information and, therefore, shall be stored in the object. The Aggregator either adds or prepends the EPATH to
the Original Device Heartbeat producer with the IP address of the Device Heartbeat produced and the CIP™ entry
port, before it is stored in the object. Each new Device Heartbeat message received by the Aggregator is stored as a
new instance of the Aggregator Object. After the Aggregator has stored the updated Device Heartbeat messages in
the object, it produces a new Device Heartbeat messages identical to the one stored in the object.

2014 ODVA Industry Conference 14 ©2014 ODVA, Inc.

It is the responsibility of the tools higher up in the network hierarchy that consume the Device Heartbeat messages
to delete the instances all the way down through all Aggregators when they have retrieved the diagnostic
information from the original Device Heartbeat producer. In Figure 5, it is the upper layer PC that collects all the
Device Heartbeat messages from the system that deletes the instance after it has drilled down to the end device and
read the diagnostic information.

Attr
ID

Need In
Implem

Access
Rule

NV Name Data
Type

Description of
Attribute

Semantics of
Values

1 Required Get V Device Heartbeat STRUCT
of:

The actual
Device

Heartbeat

See semantics
section

Heartbeat Sequence

Count
UINT Sequence

counter to
indicate changed

in the Device
Heartbeat

Identity Object
Instance ID

UINT Instance ID of
the Identity
Object who

produced the
Device

Heartbeat
Device State USINT Attribute #8 of

the associated
Identity Object

instance
Diagnostic Flags WORD Flags indicating

the diagnostics
available

Reserved USINT Reserved for
future use

Configuration
Consistency Value

UINT Attribute #9 of
the associated
Identity Object

instance
Original Device

Heartbeat Producer
Path

STRUCT
of:

Path to the
device who

produced the
Device

Heartbeat
UINT Size of Path (in

words)
Padded
EPATH

See Appendix C
for format of

this field
Table 5 Device Heartbeat Object

2014 ODVA Industry Conference 15 ©2014 ODVA, Inc.

When a tool running on an upper layer PC drills down through the network hierarchy, it makes use the Original
Device Heartbeat Producer Path to traverse the different layers. Consider the simple system in Figure 7 that on the
top have a PC running some sort of diagnostic tool going through two Aggregators to reach down to the end devices
when reading the diagnostic data.

Once the DeviceNet™ device with MAC ID 11 has produced a Device Heartbeat, it will be consumed by the A1
Aggregator. A1 creates an instance in the Aggregator Object, add the Original Heartbeat Producer Path, and then
sets the AH bit and then produces the aggregated Device Heartbeat on port 2. The Original Heartbeat Producer Path
in A1 would look like:
Path Size: 01 00
Path: 03 0B

The aggregated Device Heartbeat will be consumed on port 4 by the A2 Aggregator, which prepends the Original
Heartbeat Producer Path with the port number, where the Device Heartbeat was received, and the IP address of the
A1 Aggregator, stored the aggregated Device Heartbeat message and then produced its own aggregated Device
Heartbeat messages that the upper layer PC consumes. The Original Heartbeat Producer Path in A2 that include both
the path on DeviceNet™ and EtherNet/IP™ looks like:
Path Size: 08 00
Path: 14 0B 31 39 32 2E 31 36 38 2E 30 2E 34 00 03 0B

Figure 7 Example network with Port and Node IDs

2014 ODVA Industry Conference 16 ©2014 ODVA, Inc.

The Aggregator Object also provides options to configure filtering of incoming Device Heartbeat message and the
behavior on for creation and automatic deletion of instances. Table 6 shows the Class Attributes used to configure
the above described options.

The Diagnostic Flag Mask is a simple acceptance mask where the value in the attribute is applied using a logical
AND to the Diagnostic Flags in the Diagnostic Heartbeat message. If the results in any bit being set the received
Device Heartbeat message is accepted and processed and if the result is all zeros then the Diagnostic Heartbeat
message is discarded and no further processing is done. By default, this attribute shall be all one, meaning that all
Diagnostic Heartbeat messages will be accepted.

Using the Severity Level Filter attribute it is possible to filter on the severity level of the events in Diagnostic
Heartbeat messages. Using this attribute only events with the severity level equal to or higher (lower numerical
values) than the value configured in the attribute will be accepted.

It is also possible to filter on IP addresses using the Device Heartbeat IP Address Mask attribute. This attribute is
used as an acceptance filter for the destination IP in the Device Heartbeat messages received. The default value for
this attribute is the default IP Multicast address defined for Device Heartbeat messages. Since the end users can
configure the IP Multicast address to in Device Heartbeat messages from each device individually this creates a
highly flexible way to create virtual diagnostic network within one physical network.

Since the instances are automatically created by the Aggregator when receiving and accepting a Device Heartbeat
messages the number of instances might grow and at the end the Aggregator will run out of memory. Therefore, it is
possible to configure, using the Device Heartbeat Storage Policy attribute, the behavior on how instances shall be
handled and created when a new Device Heartbeat message has been received. There are three possible options:

1. Only keep one instance from each Device Heartbeat producer
2. Creating instances until a defined limit, when this limit is reached start overwriting the oldest instances.
3. Creating instances until a defined limit, when this limit is reached stop accepting Device Heartbeat

messages.

2014 ODVA Industry Conference 17 ©2014 ODVA, Inc.

Attr
ID

Need In
Implem

Access
Rule

NV Name Data
Type

Description of
Attribute

Semantics of
Values

<snip>
8 Required Set NV Diagnostic Flag

Mask
WORD Filter mask

applied to
Diagnostic Flags

on received
Device

Heartbeat
messages

See semantics
section

9 Required Set NV Severity Level
Filter

USINT Sets the
minimum

Severity Level
of events that

shall be accepted

See semantics
section

10 Required Set NV Device Heartbeat IP
Address Mask

STRUCT
of:

List of IP
addresses that

shall be masked

See semantics
section

UINT Number of
filtered

addresses
UDINT Device

Heartbeat IP
Address

11 Required Set NV Device Heartbeat
Storage Policy

USINT Defines how
instances will be

used to store
Device

Heartbeat

See semantics
section

Table 6 Aggregator Object

Diagnostic Object

Any device implementing and supporting Device Heartbeat messages also shall implement means to log events and
store a history of the logged events. This history of logged events shall be accessible from CIP™ using standard
explicit messaging services. There is already an object defined in [3] called Event Log Object that is designed to
provide an event indication and/or event logging for CIP™ nodes. This is a highly flexible object that can be used in
many different ways to realize event logging and to store the logged events to form a history.

It would seem logical to use the exiting Event Log Object for the task to log and store event created in the device.
There are, however, some issues with the Event Log Object and the way it is defined. It was defined to handle any
kind on information that a CIP™ nod or application ever could log, therefore, the object is huge and complex to use.
Another major issue using the Event Log Object is that it is very loosely defined where almost all attributes are
optional, thus making generic and interoperable implementations almost impossible. Both the complexity and the
lack of requirements in the definition and usage of the object could be corrected by updating [3], and by doing that
making is possible to use the Event Log Object. This paper, however, explores a possibility defining a new object,
the Diagnostic Object.

The Diagnostic Object is a small and light-weight object that any device easily could implement, yet it is designed to
be flexible enough to handle any type of diagnostic and event logging that would be required within a CIP™ node or
by the application. Based on the discussion in this paper, the thoughts and conclusions could also be used to update
the Event Log Object by updating [3] with some requirements if the Event Log Object definition.

2014 ODVA Industry Conference 18 ©2014 ODVA, Inc.

Table 7 shows the instance attributes from a suggested new Diagnostic Object. The object maintains one instance
per bit, bit 15 excluded, from the flag word in the Device Heartbeat message, where bit 0 corresponds to instance 1,
bit 1 to instance 2, and so on. Using this schema the client who receives a Device Heartbeat message can easily
interrogate the correct instance within the Diagnostic Object.

When the list of events grows as new events are logged, it is possible for configure the behavior when the event list
is full. For this purpose the List Full Action attribute is used. The configurable option is to halt the logging or scroll
the list and push out the oldest event. The default value it to scroll the list.

When logging events, it is common that the same event gets logged over and over again. The object allows the end-
user to define the behavior when these duplicate events are logged. Three configurable options are available: Ignore,
Add, and Overwrite. Ignore is the default value and in this case duplicate events is not logged. In the Add case,
duplicate events are added at the end of the event list as any new event. Using the Overwrite option the device will
replace duplicate event stored in the event list with the newly logged event.

Each instance holds an array of logged events and related information. The related information might vary from
device to device based on the capabilities and resources of the device. For example, a small device with limited code
space and not real time clock might not have the space to store the textual strings for all possible events that it can
log. It will also not be able to provide the time and date when the event was logged. Larger devices with more
memory capabilities can store all the textual strings and might have a real time clock or implements IEEE-1588, thus
being able to provide the time and date when the event was logged. The Event Code and Severity Level member
cannot be excluded from the Event Information and must be implemented by all devices. In order to let clients know
what information a device supports in the event list, it can read the Event List Contents attribute. This attribute is a
bit field where the bits correspond to a member of in the Event Information structure.

The Severity Level member defines a set of discrete levels identifying the importance of the event. Using the
Severity Type member, tools and applications can filter and group events based in the interest and importance. The
severity levels defines in the Diagnostic Object are loosely based on the severity levels define for Syslog [4]. Table
8 shows the severity levels defined by the Diagnostic Object.

2014 ODVA Industry Conference 19 ©2014 ODVA, Inc.

Attr
ID

Need In
Implem

Access
Rule

NV Name Data Type Description of
Attribute

Semantics of
Values

1 Required Get NV Severity Type
Description

SHORT_STRING Textual
representation of

the Severity
Type attribute

See semantics
section

2 Required Get NV List Max Size UINT Max number of
entries that the
Event List can

contain

See semantics
section

3 Required Set NV List Full Action USINT Configures the
action to take
when a new

event is detected
and the log is

full.

See semantics
section

4 Required Set NV Duplicate
Action

USINT Configures the
action to take

when a duplicate
event is

detected.

See semantics
section

5 Required Get NV Event List
Contents

DWORD Defines what
structure

members that
are a part of the

Event List

See semantics
section

6 Required Get V Event List

STRUCT of: List of all
logged events

See semantics
section

List Size UINT Number of
entries

diagnostic
entries

Event
Information

ARRAY of
STRUCT of:

Array of
diagnostic

entries
Event Code UINT Identifier

uniquely
identifying this
diagnostic event

Severity Level USINT The severity of
the event

Event Code
Description

SHORT_STRING Textual
representation of

the diagnostic
event

Time DATE_AND_TI
ME

Data and time
when the event

was logged
Table 7 Diagnostic Object

The Event List attribute is where all the information about the logged events are stored. The information stored for
each event is a structure where members match the Event List Contents attribute. The attribute is a structure
comprising a size member and an array of event information structures. The size member defines the number of
entries that the Event Information array contains. Each time the device logs a new event, it is evaluated against the
Duplicate Action attribute and it is determined whether the new event is to be added to the list or not. If the new
event is accepted to be added to the event list, the List Full Action attribute is used to determine the behavior.

2014 ODVA Industry Conference 20 ©2014 ODVA, Inc.

Code Description
0 Emergency
1 Alert
2 Critical
3 Error
4 Warning
5 Information

Table 8 Severity Levels

New events that are logged and stored in the Event List are added to the end of the list to allow clients to easily work
with the Event List the object implements the Get_Member and Remove_Member service. Beside those two
member services, an object specific member service is provided by the object Get_Next_Unread_Member. See
Table 9. The Get_Next_Unread_Member object specific service provides a mechanism to get the last unread event
from the Event List attribute. The response parameters for the Get_Next_Unread_Member object specific service is
one member of the Event Information member of the Event List attribute structure. In the case when there are no
unread members in the Event Information, a success reply is returned with zero data length.

Service
Code

Need in Implementation
Service name Description of Service

Class Instance
4Bhex n/a Required Get_Next_Unread_Member Returns the next member in the Event

List Attribute that has not been read yet.
Table 9 Get_Next_Unread_Member Service

Many low end devices with limited resources still can report a wide range of diagnostic information. Storing all
diagnostic textual strings in a low end device is many time not feasible or even possible. In this case, the device
would implement the Event Code within the Event List attribute. Devices that don’t implement the Event Code
Description can still provide the till textual descriptions of the logged diagnostic information. This is done using
EDS constructs using a Diag keyword. See Table 10 for a description for the format of the Diag keyword.

Field Name Field Number Data Type Required/Optional
First Event Code 1 UINT Required
First Event Code String 2 STRING Required
Nth Event Code 3,5,7,… UINT Optional
Nth Event Code String 4,6,8,… STRING Conditional1

Table Footnotes
1 Required if preceding field is specified, not allowed if preceding field is not specified.

Table 10 EDS Diag Keyword

Figure 8 shows an example of how a Diag keyword would look like in an EDS file. The first field if the Event Code
from the Event List attribute. A client reading the Event List attribute from a device not implementing the Event
Code Description can simply parse the EDS file for the device in question and look up the Event Code from the
Diag keyword and display the textual description provided in the EDS file.

2014 ODVA Industry Conference 21 ©2014 ODVA, Inc.

Figure 8 EDS Example

Conclusion

This white paper discussed and presented an architecture for an application and system diagnostic framework on
CIP™. Today, no such solution exists on CIP™ at this level presented herein. The framework allows for a highly
flexible and generic functionality, which would be easy enough to implement in small and simple devices but still
provide enough functionality to fulfill the requirements in high end device that can report a wide range of
functionality.

Furthermore the framework is designed in a way, using the Aggregators devices, so it can be used from the smallest
network up to larger networks with several of thousand devices reporting diagnostics. Within larger networks it is
also possible to create “isolated” diagnostic segments, thus, controlling and optimizing the network bandwidth used
for diagnostic traffic.

Since the functionality suggested and discussed in the paper, for the diagnostic framework, is designed around
standardized CIP™ functionality this ensures the interoperability. This is a guarantee that devices from different
vendors implementing the functionally would work without any issues in a mixed vendor installation.

The paper presents and discusses the features and functions needed in a diagnostic framework, and going into some
specific design and implementation details. Hopefully, the information presented can be used as a starting point for
the creation of diagnostic framework for CIP™.

References:

[1] ODVA, Inc. The CIP Networks Library, Volume 2: EtherNet/IP Adaptation of CIP, PUB00002
[2] ODVA, Inc. The CIP Networks Library, Volume 3: DeviceNet Adaptation of CIP, PUB00003
[3] ODVA, Inc. The CIP Networks Library, Volume 1: Common Industrial Protocol (CIP™), PUB00001
[4] R. Gerhards, Internet Engineering Task, RFC 5424, March 2009

**
The ideas, opinions, and recommendations expressed herein are intended to describe concepts of the author(s) for the possible use of CIP
Networks and do not reflect the ideas, opinions, and recommendation of ODVA per se. Because CIP Networks may be applied in many diverse
situations and in conjunction with products and systems from multiple vendors, the reader and those responsible for specifying CIP
Networks must determine for themselves the suitability and the suitability of ideas, opinions, and recommendations expressed herein for intended
use. Copyright ©2014 ODVA, Inc. All rights reserved. For permission to reproduce excerpts of this material, with appropriate attribution to the
author(s), please contact ODVA on: TEL +1 734-975-8840 FAX +1 734-922-0027 EMAIL odva@odva.org WEB www.odva.org.
CIP, Common Industrial Protocol, CIP Energy, CIP Motion, CIP Safety, CIP Sync, CompoNet, ControlNet, DeviceNet, and EtherNet/IP are
trademarks of ODVA, Inc. All other trademarks are property of their respective owners.

http://www.odva.org/

