

Multi-Option Device Support

Pat Telljohann Rockwell Automation

Technical Track

www.odva.org

Agenda

- Introduction
- Objectives
- Multi-Option Device Support Definition
 - Identity Object
 - Keying
 - Device Class Information
- Use cases
 - Online
 - Offline

Objectives

- Multi-Option Device Support Definition
 - Identity Object
 - Keying
 - Device Class Information
- Use cases
 - Online
 - Offline

Multi-option Device definition

- A device that presents more than one logical view depending on the option value for each option
- These options are typically items the user can choose either when the device is ordered or by adding pluggable components to the device
- A car is an analogy
 - The customer can order a model of a car and then select options like body style (coupe, convertible, hatchback, station wagon, etc.), engine type (4 cylinder, 6 cylinder, electric, etc.), wheel style (steel, aluminum, etc.), transmission (automatic, manual, etc.)

Multi-option Device definition

- The Multi-option Device definition is not meant to be used to represent a modular system where each module can be addressed using a port segment
- Some complex devices will be both modular and Multi-option

Devices with multiple options

- Currently devices with multiple options require a unique identity (product code) for each unique combination of options
- This results in many identities
 - A device with 6 options, each with 3 choices would result in 3⁶ identities (729)
- And many EDS files (729 in example above)

Agenda

Objectives

- Multi-Option Device Support Definition
 - Identity Object
 - Keying
 - Device Class Information
- Use cases
 - Online
 - Offline

Objectives

- Uniquely identify each logical view presented by option values
- Provide the ability to verify the option values supported by a specific device
- Limit the number of files required to represent "device class" information (EDS)
- CIPSE-001-189 defines Multi-option support, currently being reviewed by CIP System Architecture SIG

- Introduction
- Objectives
- Multi-Option Device Support Definition
 - Identity Object
 - Keying
 - Device Class Information

Use cases

- Online
- Offline

Identity Object and Keying

- The multi-option definition allows a single identity (Vendor ID, Device Type, Product Code) for the base device
 - Options are extensions to the base device
- New attribute defined to identify options that are present
- New information defined in Get_Attributes_All response data (bit 1 in Status attribute) to indicate device supports additional identity information
 - New Get_Additional_Attributes service defined that returns additional identity attributes, including the options attribute
- New electronic key segment type defined to key option values

Device Class information

- One EDS file is required for each Vendor ID, Device Type, Product Code and Major Revision
- One ODS (Option Data Sheet) is required for each option value. The ODS file is identified by Vendor ID, Option Type and Option Choice
- ODS file definition is very similar to EDS file definition
- A Multi-option device family with 6 options types, each with 5 options choices would require 1 EDS file and 30 ODS files - without the Multi-option device definition, 15,625 EDS files would be required

Device Class information

- The EDS defines the device class information for the base device plus the supported option types
- The ODS defines the device class information for an option value for an option type
- Typical information in an ODS
 - Catalog number
 - Attributes
 - Connections
 - Ports
 - Sub-options
- EDS file and ODS files combined and result in the full set of device class information for the device

Options

- EDS defines the supported options, which defines which ODS files to use
- One ODS per option value
- Example EDS and ODS files:

EDS file snippet

```
[Device]
    VendCode = 65535;
    VendName = "Widget-Works, Inc.";
    ProdType = 768;
    ProdTypeStr = "Option type device";
    ProdCode = 1;
    MajRev = 1;
    MinRev = 1;
    ProdName = "Option Device";
    Option1 = 1, "Frame Size",
          1, "Large",
          2, "Small";
    Option2 = 5, "Overload Type",
          1, "Alloy",
          2, "Bi-metal";
    Option3 = 25, "Control Power",
          1, "24 VDC",
          2, "110 VAC";
```

ODS file snippet

[Option]

```
VendCode = 65535;
VendName = "Widget-Works, Inc.";
OptionType = 1;
OptionTypeName = "Frame Size";
OptionChoice = 1;
OptionChoiceName = "Large";
```

ODS file snippet

```
[Option]
VendCode = 65535;
VendName = "Widget-Works, Inc.";
OptionType = 1;
OptionTypeName = "Frame Size";
OptionChoice = 2;
OptionChoiceName = "Small";
```


Catalog Number

- EDS defines the base catalog number
- Each ODS optionally defines an addition to the base catalog number
- The combination is a catalog number for the specific device
- Example EDS and ODS files and result:

EDS file snippet ODS file snippet [Device] [Device] [Option] VendCode = 65535;VendCode = 65535;VendCode = 65535;VendName = "Widget-Works, Inc."; VendName = "Widget-Works, ProdType = 768;ProdType = 768;Inc.": ProdTypeStr = "Option type device"; OptionType = 1;ProdCode = 1;ProdCode = 1;**OptionTypeName = "Frame Size";** MajRev = 1;MajRev = 1;OptionChoice = 1;

MinRev = 1;ProdName = "Option Device"; Catalog = "3255-OptDev%1"; **OptionChoiceName = "Large";** Catalog = "Ex";

Resulting device class information

VendName = "Widget-Works, Inc."; ProdTypeStr = "Option type device"; MinRev = 1;**ProdName = "Option Device";** Catalog = "3255-OptDevEx";

Attributes

- EDS defines the attributes that exist in the base device via ParamN and AssemN keywords
- Each ODS defines attributes that exist for the option via **Resulting device class information** ParamN and AssemN keywords

Examples:

EDS snippet

[Params] Param1 =0. 6,"20 1D 24 01 30 06", 0x0002, **OxC7**, 2, "FilterOffOn", "ms", "Input OFF-to-ON Filter.\n" 0,16000,1000,,,,,,,;;;

ODS snippet

[Params]

[Params] Param1 =0, 6,"20 1D 24 01 30 06", 0x0002. **OxC7**, 2, "FilterOffOn", "ms", "Input OFF-to-ON Filter.\n" 0,16000,1000,......

Technical Track © 2014 ODVA, Inc. 2014 Industry Conference & 16th Annual Meeting All rights reserved.

Connections

- EDS defines the connections that exist in the base device
- Each ODS defines connections that exist for the option
- If an option adds to previous I/O assemblies the ODS defines an AssemN entry that matches a previous AssemN

Connection added by option

EDS snippet	ODS snippet
[Connection Manager]	[Connection Manager]
0x04020002,	0x04020002,
0x66240405, ,0,,	0x66240405, ,0,,
, 0 ,,	, 0 ,,
'' II IICinanta alcanta automaticii	
"Simple short cut path", "",	"Single short cut path", "",
"20 04 24 66 2C 23 2C 69";	"20 04 24 66";

Resulting device class information

[Connection Manager] Connection1 = 0x04020002, 0x66240405, ,0,, ,0,, '' "Simple short cut path", "'', "20 04 24 66 2C 23 2C 69"; Connection2 = 0x04020002, 0x66240405, ,0,, ,0,, ''

···, Č

"20 04 24 66"

Connection extended by option

EDS snippet

```
[Connection Manager]
Connection1 =
0x04020002,
0x66240405,
,,Assem1,
,0,,
''
"Assembly example",
"",
"20 04 24 66 2C 23 2C 69";
[Assembly]
Assem1 =
"Input",
'
2,
'
''
```

ODS snippet

Resulting device class information

[Connection Manager]
Connection1 =
0x04020002,
0x66240405,
,,Assem1,
,O,,
"Assembly example",
· · · · · · · · · · · · · · · · · · ·
"20 04 24 66 2C 23 2C 69";
[Assembly]
[Assembly]
[Assembly] Assem1 =
[Assembly] Assem1 = "Input",
[Assembly] Assem1 = "Input",
[Assembly] Assem1 = "Input", , 6,
[Assembly] Assem1 = "Input", , 6, ,
[Assembly] Assem1 = "Input", , 6, , ,
[Assembly] Assem1 = "Input", , 6, , , , Param1,
[Assembly] Assem1 = "Input", , 6, , , Param1, ,Param2,

- EDS defines the ports that exist in the base device
- If the option adds ports then the ODS defines PortN entries

Examples:

EDS snippet

[Port] Port1 = TCP, "Port A", "20 F5 24 01",2;

ODS snippet

[Port] Port2 = ControlNet, "Port B", "20 F0 24 01",3; Resulting device class information

[Port] Port1 = TCP, "Port A", "20 F5 24 01",2; Port2 = ControlNet, "Port B", "20 F0 24 01" 3:

page 19 www.odva.org

Sub-options

- An ODS can define supported sub-options for this specific option value (similar to EDS defining the supported options for the base device)
- The ODS defines the device class information for an option value for a sub-option
- Example option ODS file and sub-option ODS files:

Option ODS file snippet

[Option] VendCode = 65535; VendName = "Widget-Works, Inc."; OptionType = 5; OptionTypeName = "Overload Type"; OptionChoice = 1; OptionChoiceName = "Alloy"; Option1 = 987, "Heating Element" 3, "FLC 1-10 amps", 10, "FLC 11-20 amps";

Sub-option ODS file snippet

[Option] VendCode = 65535; VendName = "Widget-Works, Inc.";

OptionType = 987; OptionTypeName = "Heating Element"; OptionChoice = 3; OptionChoiceName = "FLC 1-10 amps":

Sub-option ODS file snippet

[Option]

VendCode = 65535; VendName = "Widget-Works, Inc."; OptionType = 987; OptionTypeName = "Heating Element"; OptionChoice = 10; OptionChoiceName = "FLC 11-20 amps";

2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 20 www.odva.org

- Introduction
- Objectives
- Multi-Option Device Support Definition
 - Identity Object
 - Keying
 - Device Class Information
- Use cases
 - Online
 - Offline

Offline usage

- User adds multi-option device to configuration (same as adding other devices)
- This results in a default set of options choices
- User changes option choices
- The EDS and ODS files are "combined" to produce device class information for device
- User configures multi-option device (same as configuring other devices)

Online usage

- The bus is browsed CIP Identity object Get_Attributes_All - for each possible link address
- The Get_Attributes_All response indicates more identity is available for the device
- Get_Additional_Attributes is used to read the option types and values
- When device is added to configuration, the options are pre-selected
- When communicating with the configured device the new key segment to verify options is used

Questions?

Technical Track © 2014 ODVA, Inc. 2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 24 www.odva.org