

Review of the CIP Safety SafeMotion Profile Functionality

Mark Chaffee Rockwell Automation

Technical Track

John Deinlein Rockwell Automation

www.odva.org

Safety Controller Architecture

- Networked Safety
- Based on EtherNet/IP
- Safety Controller/PLC
 - Safety Task
- Safety I/O Devices
 - Emergency Stop
 - Safety Relays
 - Light Curtains
 - Safety Mats
 - Door Lock Control
- New Safety Device CIP Safety Drives

- There are many safety standards that provide guidelines for safety systems.
- CIP Safety Drive Profile design focuses on EN61800-5-2, which defines Safety Function requirements for adjustable speed drive systems.

Standard	Relevance
ISO 13849-1	Safety related parts of control systems: Describes the categories, requirements, functional characteris- tics, and general principles for design
IEC 61508	Generic standard covering the safety lifecycle of electrical/ elec- tronic/ programmable electronic systems. Facilitate development of application sector standards. Risk assessment for safety functions & safety integrity levels (SIL).
IEC 60204-1	Electrical Equipment of Industrial Machines: Defines safety related conventional functions, stopping catego- ries, and operation during emergency situations
IEC 61800-5-2	Safety requirements and functional safety for adjustable speed drive systems
IEC 62061	Standard which is implementation of IEC 61508 specifically for machinery sector including functional safety and manage- ment procedures to achieve functional safety by design
NFPA-79	National Fire Protection Agency Electrical Standard for Indus- trial Machinery: Covers electric/electronic equipment or systems supplied as part of industrial machinery or mass production industrial equipment that will promote safety to life and property
OSHA	Occupational Safety and Health Administration:

2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 3 www.odva.org

EN61800-5-2 Drive Safety Functions

- EN61800-5-2 provides high level functional description of drive safety functions
- These are the safety functions that are targeted for CIP Safety Drive Profile support

Functionality Grouping

- Disconnect Torque generating power to the motor (STO)
- Safe stop (i.e. SS1, SS2)
- Safe speed monitoring (i.e. SSM)
- Safe acceleration monitoring (i.e. SLA)
- Safe torque monitoring (i.e. SLT)
- Safe position monitoring (i.e. SLP)
- Safe brake control (i.e. SBC)

61800-5-2	
Functions	Description
STO	Safe Torque Off
SS1	Safe Stop 1
SS2	Safe Stop 2
SOS	Safe Operational Stop
SLA	Safe Limited Acceleration
SAR	Safe Acceleration Range
SLS	Safe Limited Speed
SSR	Safe Speed Range
SLT	Safe Limited Torque
STR	Safe Torque Range
SLP	Safe Limited Position
SLI	Safe Limited Position Increment
SDI	Safe Direction
SMT	Safe Motor Temperature
SBC	Safe Brake Control
SCA	Safe cam
SSM	Safe Speed Monitor

Drive Safety Function Examples

Safe Torque Off

STO (Safe Torque Off)

- Stop Request
- Wait Stop Delay
- Disable Motor Power

SS1 (Safe Stop 1)

- Stop Request
- Wait Stop Monitoring Delay
- Monitor Decel Until Standstill
- Disable Motor Power

SLS (Safe Limited Speed)

- Safe Limited Speed Request
- Wait Stop Monitoring Delay
- Monitor Speed < Safe Speed Limit

Technical Track © 2014 ODVA, Inc. 2014 Industry Conference & 16th Annual Meeting All rights reserved.

Safe Speed Limit

page 5 www.odva.org

Acceptable Speed Range

Time

Technical Track © 2014 ODVA, Inc. 2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 6 www.odva.org

Drive Safety System Architecture Options

OPTION 1

Drive safety I/O activated drive safety functions <u>OPTION 2</u> ← Safe Motion Subcommittee Target Safety controller activated drive safety functions <u>OPTION 3</u> Safety controller configured & activated drive safety functions <u>OPTION 4</u> ← Safe Motion Subcommittee Target Safety controller executed drive safety functions

	Safety Network	Safety I/O	Drive Safety	Drive Safety	Motion Profile
	Connection Required	Owner	Function Activation	Config Source	Command
Option 1	No	Drive	Drive	Drive	Drive
Option 2	Yes	Safety Controller	Safety Controller	Drive	Drive
Option 3	Yes	Safety Controller	Safety Controller	Safety Controller	Drive
Option 4	Yes	Safety Controller	Safety Controller	Safety Controller	Controller

Safety Controller Activated Safety Functions (Option 2)

- CIP Safety network connection required.
- Safety Functions are executed in the Drive.
- Safety Function configuration data is stored in the Drive.
 - Local configuration tool with signature management.
- Safety Controller
 - Manages all safety I/O local and distributed
 - Activates drive safety functions in drive & monitors drive safety status
 - User programmable safety logic with access to broad range of safety instructions and safety devices
- Benefits
 - Simple pre-defined Safety Functions in drive
 - Relatively Fast Safety Reaction Time.
 - Light impact on Safety Controller loading.
- Deficiencies
 - Drive safety function configuration is locked in drive, so limited drive setpoint control.
 - No Support for Multi-axis Coordination.

Safety Controller Executed Drive Safety Functions (Option 4)

- CIP Safety network connection required.
- Safety functions are executed in the safety controller (Except STO)
- Safety function configuration is stored in the Safety Controller.
 - Can be changed dynamically within Safety Program.
- Safety Controller
 - Manages all safety I/O local and distributed
 - Executes drive safety functions in Safety Task using drive safety status data
 - User programmable safety logic with access to broad range of safety instructions and safety devices

Benefits

- Support for Multi-axis Coordination.
- Programmable drive safety function set-point control.
- Flexible implementation of drive safety functions via safety program.

Deficiencies

- Relatively Slow Safety Reaction Time.
- Heavier impact on Safety Controller loading.
- Additional Safety Function programming required.

2014 Industry Conference & 16th Annual Meeting All rights reserved.

Safety Motion Device Profile

New Profile Targets 2 Distinct Drive Types

- CIP Motion Drives
- Non-CIP Drives (SERCOS III)
- Profile Adds 2 New Safety Drive Device Types
 - CIP Motion Safety Drive Device Type: 2D_{hex}
 - Safety Drive Device Type: 2E_{hex}
- Both Drive Device Types...
 - Support CIP Safety Connections to Safety Controller.
 - Share Common Safe Motion Objects.
 - Share Common Safety I/O Assembly Definitions.
 - Share Common Safety Supervisor State Model

Object Model for CIP Motion Safety Drive Device

New Safe Motion Objects:

- 1. Safety Stop Functions Object
- 2. Safety Limit Functions Object
- 3. Safety Feedback Object
- 4. Safety Dual Channel Feedback Object

Basic CIP Safety Objects:

- 1. Safety Validator Object
- 2. Safety I/O Assembly Object
- 3. Safety Supervisor Object

CIP Motion Objects:

- 1. Motion Device Axis Object
- 2. Time Sync Object
- 3. QoS Object
- Basic CIP Objects:
 - 1. Identity Object
 - 2. Message Router

page 11 www.odva.org

Motion Device Axis Object State Model

- CIP Motion Drive
 behavior is governed
 by the Motion Device
 Axis Object State
 Model.
- Axis Object states are mapped to Identity Object states.
- Identity Object states govern Module Status LED Behavior.

2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 12 www.odva.org

Safety Supervisor State Model

- CIP Safety Device behavior is governed by the Safety Supervisor State Model.
- Safety Supervisor states are mapped to Identity Object states.
- Safety Supervisor states govern Module Status LED Behavior.
- Problem: A CIP Motion Safety Drive has only 1 Identity Object and 1 Module Status LED. How do we reconcile behavior?

Safety Drive State Precedence

Identity state and Module Status LED behavior can be reconciled by applying state precedence rules to determine the drive's Governing State:

- 1. Self-Test
- 2. Unrecoverable Fault
- 3. Recoverable Fault
- 4. Safety Configuring
- 5. Safety Idle
- 6. Axis Standby
- 7. Axis Operational
- 8. Safety Executing
- 9. Safety Waiting for TUNID (Out of Box)

Safety Drive State Mapping

Safety State	Axis State	Governing State	Identity State	Module Status LED
Self-Testing	Any State	Safety Supervisor	Device Self-Testing	Flashing Red/Green
Any State*	Self-Test	Motion Axis	Device Self-Testing	Flashing Red/Green
Self-Test Exception	Any State*	Safety Supervisor	Major Unrecoverable	Solid Red
Waiting for TUNID	Any State*	Safety Supervisor	Standby	Flashing Red/Green
Configuring	Any State*	Safety Supervisor	Standby	Flashing Red/Green
Idle	Any State*	Motion Axis	Standby	Flashing Green
Waiting for TUNID with Torque Permitted,	Initializing Pre-Charge Shutdown Start Inhibit	Motion Axis	Standby	Flashing Green
Executing, Executing with Torque Permitted	Stopped Stopping Starting Running Testing	Motion Axis	Operational	Solid Green
Any State*	Aborting	Motion Axis	Major Recoverable or Major Unrecoverable	Flashing Red or Solid Red
Any State*	Major Faulted	Motion Axis	Major Recoverable or Major Unrecoverable	Flashing Red or Solid Red
Abort	Any State*	Safety Supervisor	Major Recoverable	Flashing Red
Critical Fault	Any State*	Safety Supervisor	Major Unrecoverable	Solid Red

page 15 www.odva.org

New Safety Supervisor States for Commissioning & Maintenance

- Unlike Safety I/O devices, Safety Drives are sophisticated devices that require commissioning and maintenance.
- Commissioning requires the safety drive be operational "Out of the Box" when there is no Safety Configuration.
 - Add "Waiting for TUNID with Torque Permitted state".
- Maintenance requires the safety drive be permitted to operate when the Safety Output Connection is Idle.
 - Add "Executing with Torque Permitted state".

2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 16 www.odva.org

Safety Output Assemblies

Table 6-8.10 Safety Output Data with STO (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
180 _{hex}	0	Reset Request	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	STO Output

Table 6-8.11 Safety Output Data with STO and Safe Brake Control (1 Axis Instance)

÷		• • • • • •	Survey ou							
	Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
	181 _{hex}	0	Reset Request	Reserved	Reserved	Reserved	Reserved	Reserved	SBC Output	STO Output

Table 6-8.12 Safety Output Data with Safe Stop Functions (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
182 _{hex}	0	Reset	Reserved	SMT	SOS	SS2	SS1	SBC	STO
		Request		Request	Request	Request	Request	Output	Output

Table 6-8.13 Safety Output Data with Safe Stop/Limit Functions (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
183 _{hex}	0	Reset Request	Reserved	SMT Request	SOS Request	SS2 Request	SS1 Request	SBC Output	STO Output
	1	Reserved	Reserved	SDI– Request	SDI+ Request	Reserved	SLA Request	SLS Request	SSM Request

Table 6-8.14 Safety Output Data with Safe Stop and Safe Limit Groups (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
184 _{hex}	0	Reset Request	Reserved	SMT Request	SOS Request	SS2 Request	SS1 Request	SBC Output	STO Output
	1	Reserved	Reserved	Reserved	Reserved	Group Select			

Safety Input Assemblies

Table 6-8.20 Safety Input Data with STO (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
1A0 _{hex}	0	Reset Required	Safety Fault	Reserved	Reserved	Reserved	Reserved	Reserved	Torque Disabled

Table 6-8.21 Safety Input Data with STO and Safe Brake Control (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
1A1 _{hex}	0	Reset Required	Safety Fault	Reserved	Reserved	Reserved	Reserved	Brake Engaged	Torque Disabled

Table 6-8.22 Safety Input Data with Safe Stop Functions (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
1A2 _{hex}	0	Reset Required	Safety Fault	Safe Motor Temp	Safe Standstill	SS2 Active	SS1 Active	Brake Engaged	Torque Disabled

Table 6-8.23 Safety Input Data with Safe Stop/Limit Functions (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
1A3 _{hex}	0	Reset Required	Safety Fault	Safe Motor Temp	Safe Standstill	SS2 Active	SS1 Active	Brake Engaged	Torque Disabled
	1	Reserved	Reserved	Motion Negative	Motion Positive	SDI Active	SLA Active	SLS Active	Safe Speed

Table 6-8.24 Safety Input Data with Safe Stop and Safe Limit Groups (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0
1A4 _{hex}	0	Reset Required	Safety Fault	Safe Motor Temp	Safe Standstill	SS2 Active	SS1 Active	Brake Engaged	Torque Disabled
	1	Reserved	Reserved	Reserved	Reserved	Group Active			

Safety Input Assembly with Feedback Data

Table 6-8.30 Safety Input Data with STO and Feedback Data (1 Axis Instance)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0				
1C0 _{hex}	0												
	1	Feedback Position (DINT)											
	2												
	3												
	4	Feedback Velocity (DINT)											
	5												
	6												
	7												
	8												
	9		Feedback Acceleration (DINT)										
	10												
	11												
	12	Reset	Safety	Reserved	Reserved	Reserved	Reserved	Reserved	Torque				
		Required	Fault						Disabled				

 \oplus

Safety Input Assemblies with 2 Axis Instances

Table 6-8.38 Safety Input Data with Safe Stop/Limit Functions and Feedback Data (2 Axis Instances)

Instance	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bitl	Bit0				
1CB _{hex}	0												
	1	Feedback Position 1 (DINT)											
	2												
	3	3 4 5 Feedback Velocity 1 (DINT)											
	4												
	5												
	6												
	7												
	8												
	9 Feedback Acceleration 1 (DINT)												
	10												
	11												
	12												
	13	Feedback Position 2 (DINT)											
	14												
	15												
	10												
	1/	Feedback Velocity 2 (DINT)											
	10												
	20												
	21	•		-									
	22			Fee	edback Acceler	ration 2 (DIN	1)						
	23												
	24	Reset	Safety	Safe Motor	Safe	\$\$2	SS1	Brake	Torque				
		Required 1	Fault 1	Temp 1	Standstill 1	Active 1	Active 1	Engaged 1	Disabled 1				
	25	Reserved	Reserved	Motion	Motion	SDI	SLA	SLS	Safe				
				Negative 1	Positive 1	Active 1	Active 1	Active 1	Speed 1				
	26	Reset	Safety	Safe Motor	Safe	SS2	SS1	Brake	Torque				
		Required 2	Fault 2	Temp 2	Standstill 2	Active 2	Active 2	Engaged 2	Disabled 2				
	27	Reserved	Reserved	Motion	Motion	SDI	SLA	SLS	Safe				
				Negative 2	Positive 2	Active 2	Active 2	Active 2	Speed 2				

Technical Track © 2014 ODVA, Inc. 2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 20 www.odva.org

Safety Function Object Interaction

Technical Track © 2014 ODVA, Inc. 2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 21 www.odva.org

Safe Limited Speed Timing Diagram

	Monitor Speed	Monitor Stop	Engage Brake & Disable Torque	Resart
SLS Request	Request			
SLS Active	Active			
SLS Limit Active				
SS1 Activation	0x00	0x01		0x00
SS1 Active		Active		
SS1 Complete				
STO Activation		0x00	0x02	0x00
STO Status		Permit Torque	Disable Torque	
Torque Disabled		Torque Perm	itted Torque Disabled	
SBC Activation		0x00	0x02	0x00
SBC Status		Release Brake	Engage Brake	
Brake Engaged		Brake Released	Brake Engaged	
Function Reset				

Group Safety Limit Function Selection

Instanc e	Byte	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
184 _{hex}	0	Reset	Reserved	SMT	SOS	SS2	SS1	SBC	STO
		Request		Request	Request	Request	Request	Output	Output
	1	Reserved	Reserved	Reserved	Reserved	Group Sel	ect		

2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 23 www.odva.org

Safety Core Passes Safety Status data to Motion Device Axis Object

2014 Industry Conference & 16th Annual Meeting All rights reserved.

page 24 www.odva.org

Conclusion

- Drives with network safety connection support are a key component in emerging safety controller based safety architectures.
- Recently published Safety Motion Device Profile addresses critical need for a networked "Safety Drive".
- Two new safety drive device types were defined, one serving CIP Motion drives and one for non-CIP (SERCOS III) drives.
- Merging existing CIP Motion behavior with CIP Safety behavior created design challenges with respect to state behavior, commissioning, and maintenance.
- Safety Motion Device I/O assemblies and new Safety Motion Objects were the reviewed.
- Finally, mechanisms to coordinate motion control functions with drive safety functions were discussed, introducing the concept of Safety Status Pass Thru.