

IPv6 Adaptation of EtherNet/IP

Evolution not Revolution

Technical Track

www.odva.org

Technical Tracl

© 2012 ODVA

Drivers for Migration

IPv4 Address Pool Depleted

- IANA issued last 5 blocks to the 5 RIRs on 3 February 2011
- ▶ 15 April 2011, AP runs out
- 14 Sept 2012, Europe runs out

US Government Mandates IPv6²

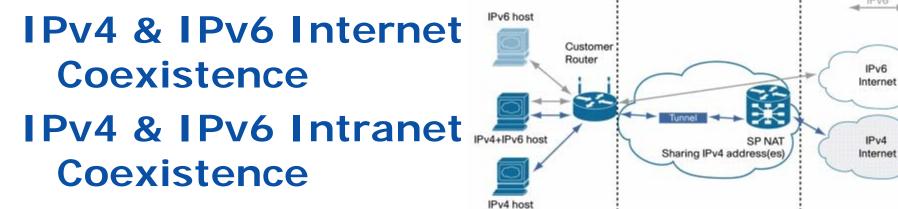
- USGv6-1.0 IPv6 Profiles
- No EtherNet/IP Device is "USGv6-1.0-Capable"

There are in other words no LPALLOCATED searce and in the MAR.cost This is it! Date are in the initial cost of the second of th

COMPS Why Pay More? Compare Us and Save. Free Extras, a \$100 Value!

China National Development and Reform Commission to invest RMB 8bn (\$1.3bn) in IPv6 adoption over 5 years

Sounds Like Y2k?


Extending the Life of IPv4

PUBLIC IPv4 Addresses depleted

Enterprise uses private IP addresses

Network Address Translation

- 192.168.1.x<>10.10.y.y<>Internet
- IPv6 Internet available to IPv4 Clients

IPv6 Migration will be slow and smooth

Internet

Technical Track © 2012 ODVA, Inc. 2012 ODVA Industry Conference & 15th Annual Meeting All rights reserved.

page 3 www.odva.org

IPv6 Primer

The obvious: bigger IP addresses

- 128 bit (IPv6) vs 32 bit (IPv4)
- Global Unicast Address format:

48 bits (or more)	16 (or fewer)	64 bits
routing prefix	subnet id	interface identifier

Link local address format:

10 bits	54 bits	64 bits
prefix	0	interface identifier

Every node has a link local address assigned via Stateless Address Autoconfiguration

IPv6 Primer

Simplified IP header

<u>O</u> <u>ct</u> <u>et</u>	<u>Bit</u>	0	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	31
0	0	Version Traffic Class Flow Label													_																		
4	32	Payload Length														Next Header Hop Limit																	
8	64		Source Address																														
12	96																																
16	128																																
20	160																																
24	192																																
28	224		Dest	inati	on A	Addr	ess																										
32	256																																
36	288																																

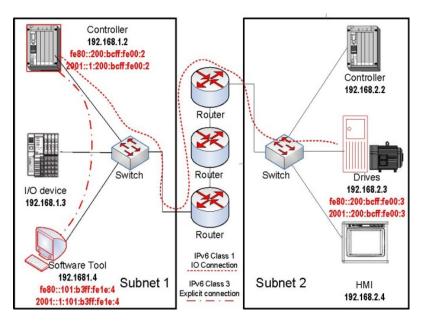
Note: TCP and UDP remain the same

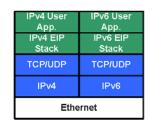
2012 ODVA Industry Conference & 15th Annual Meeting All rights reserved.

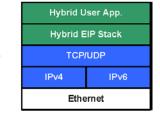
page 5 www.odva.org

IPv6 Primer

Other new behaviors and features


- Neighbor Discovery protocol (enhance and replace ARP)
- New multicast address architecture; Multicast Listener Discovery (MLD) instead of IGMP
- Duplicate Address Detection (DAD) vs. IPv4 ACD (which is optional)
- DHCPv6




IPv6 Architectures

Holistic IPv6 and Hybrid IPv4/6

- Forward and backward compatibility needed
 - User support
 - Business case
- Dual stack critical
 - Controller
 - Device
- Abstract CIP from IP through TCP/UDP

2012 ODVA Industry Conference & 15th Annual Meeting All rights reserved.

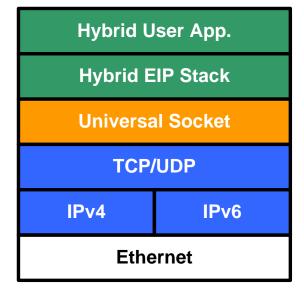
page 7 www.odva.org

Changes required to EtherNet/IP Spec

Is it bigger than a breadbox?

- General requirements for IPv6 nodes
- ListIdentity & network browsing
- ForwardOpen request / response
- Usage of multicast
- TCP/IP Interface Object
- DLR protocol and object

- CIP Safety on EtherNet/IP (UNID)
- QoS Object (minor)
- IPv6 Duplicate Address Detection
- Dual stack requirements
- IPv6 address selection and usage


Yes, but it's smaller than CIP Motion

Porting an Application from IPv4 to IPv6

Independent of CIP Stack – how to migrate TCP/IP stack

- Select dual stack
- Develop hybrid application
 - IP protocol selection
- Handle multiple unicast IPv6 addresses
 - IPv6 address selection
- Broadcast to link-local all-node multicast

page 9 www.odva.org

Porting an Application from IPv4 to IPv6

Independent of CIP Stack – how to migrate TCP/IP stack

- Address related interfaces changed
 - IP address
 - Socket data structure
 - Address conversion function
 - Address resolution function
 - Multicast interfaces
- Socket functions for TCP/UDP data flow control not changed
 - Socket creation, TCP/UDP receiving and sending

TCP/IP Interface Object

Problem:

- Current object supports IPv4 address config only
- Need config method allowing for multiple IPv6 addresses
- Opportunity to "clean up" the current object

Proposed Solution:

- Define new object supporting IPv4 & IPv6
- Eventually deprecate current object
- Ongoing discussion on design of new object

List Identity Command

Problem:

- Currently sent to IPv4 broadcast addr. No broadcast in IPv6
- Response contains embedded IPv4 address
- Needs to account for multiple IPv6 addresses

Proposed Solution:

- For IPv6 send to link-local all-nodes multicast
- Define rules for responding when multiple addresses in use
- Structure of the ListIdentity response still TBD

Forward Open/Close

Problem:

- IPv4 multicast address embedded in Originator-Target ForwardOpen exchange
- Needs to allow for IPv6 as well as IPv4

Proposed Solution:

- Allow Sockaddr Info item to include IPv6 address. Sin_Family indicates IPv4 or IPv6
- Backwards compatible with current IPv4 implementations

CIP Adaptation of IPv6

A slim volume....

Minimimise impact on users and vendors Make it as simple as possible to understand

Ensure that no action impacts:

- IPv4 Devices
- Ability of an IPv4 host to communicate with a hybrid device

Demonstration

Video using Camtasia or similar tool to show:

- Single Stack IPv6 Devices Interacting
- Wireshark traces
- Dual stack originator simultaneously interacting with IPv4 and IPv6 devices
- Wireshark traces
- Communication with a ControlLogix controller using IPv6

Demonstration

Video using Camtasia or similar tool to show:

- Network browsing
- UCMM (SW tool to Scanner)
- Class 3 (SW tool to adapter)
- Class 1 (Scanner to adapter)
- Demo and Wireshark tracesIPv4 and IPv6

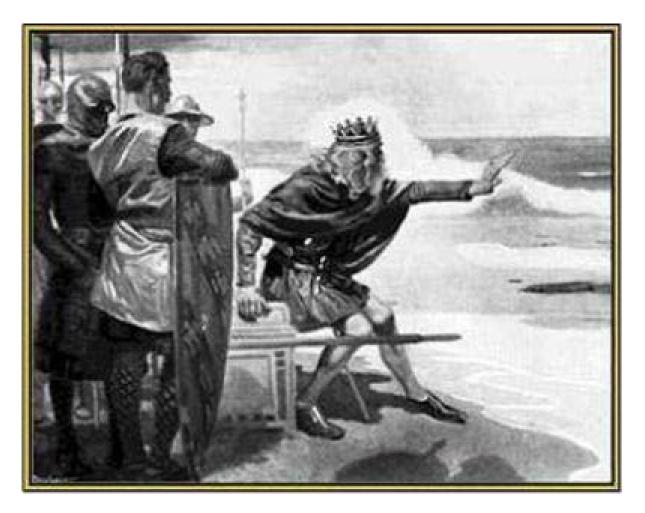
Technical Track © 2012 ODVA, Inc. 2012 ODVA Industry Conference & 15th Annual Meeting All rights reserved.

page 16 www.odva.org

The ODVA Roadmap

Goal: Position EtherNet/IP as "IPv6-Ready"

- Ongoing prototyping / interoperability demo
 - Continue current work. Demo at Implementor Workshop
 or Plug Fest
- EtherNet/IP System Architecture SIG develops specification content
 - Work has started. Currently working on major technical items and evaluating options and alternatives
 - After initial work, begin creating specification content
 - Completion Target: Late Spring 2014


The ODVA Roadmap

Goal: Position EtherNet/IP as "IPv6-Ready"

- Approval by TRB; publication in Volume 2
 - Target: Late 2014
- Development of Conformance Tests
 - Test with initial prototype implementation based on spec
- White paper to assist end users in IPv6 adoption • ????

Technical Track © 2012 ODVA, Inc. 2012 ODVA Industry Conference & 15th Annual Meeting All rights reserved.

page 19 www.odva.org