

Machine-To-Supervisory Communication Framework based on OPC Unified Architecture

Pedro Reboredo, M.Sc. Bosch Rexroth AG

Technical Track

www.odva.org

Outline

- Introduction
- Requirement Analysis
 - Communication Architecture
 - Controller-To-Field Level Communication
 - Machine-To-Supervisory Communication
- Information Modeling
 - CIP Data Model
 - sercos Data Model
- OPC Unified Architecture
- Framework Concept
- Conclusion and Outlook

Introduction

- Industrial manufacturing is an important factor for global economy
- Automated production machines
 - Enable constant product quality
 - Ensure wealth of industrial nations
 - Ensure high flexibility
- Flexible manufacturing systems are required due to:
 - Decreasing product life cycle times
 - Variety of product configurations
- Holistic Machine Optimization
 - Ensures business turnover
 - Enables productivity awareness
 - Needs high engineering efforts due to variety of communication protocols

Sample Applications © Bosch Rexroth AG

Universal framework for machine-to-supervisory (M-to-S) communication enabling interoperability

Today's Communication Architecture

ISA-95 Manufacturing Levels according to [1] from [2]

- Control feedback loops are implemented between supervisory and machine level (ERP to technical process)
- ► **High efforts** exist for vertical integration due to variety of device suppliers and communication protocols
- Hardware gateways are mandatory

Controller to Field Device Requirements

- Industrial Ethernet based fieldbus protocols have gained acceptance during the last years
- Ethernet was already known from the office world
- Main industrial requirements:
 - Determinism (defined time slots) including Integration of Synchronization mechanisms
 - Integration of COTS hardware
 - Availability of products and components

M-to-S Communication Requirements

Open Standards

Reduces vendor dependencies/ minimize risks

Semantic Interoperability

Same "language understanding" for information exchange between different suppliers

Security Mechanisms

 Prevent communication mechanisms from being misused (user authentication and authorization, data encryption)

Defined Interfaces

Abstraction of application and communication by defining a way to describe (service) interfaces

Information Modeling

Goals:

- Achieve Semantic Interoperability by
 - ... defining a common information interpretation
 - ... creating entities and relationships
 - ... using defined mechanisms / a framework
- Maximize Use Case Coverage by
 - ... using an application layer of established protocols CIP and sercos
- Main Goal:
 - Use information models in a standardized architecture enabling secure communication mechanisms

CIP Data Model Overview

- Objects include attributes and services
- Classes group objects
- Addressing data values by: Device.Class.Instance.Attribute
- 8Bit, 16Bit and 32Bit addressing supported

sercos Data Model Overview 1/2

sercos Data Profiles:

- SCP sercos Comm. Profile
 - configuration of comm.
- GDP Generic Device Profile
 - Independent from device class
 - e.g. diagnosis, archiving
- FSP Function Specific Profile
 - Dedicated device class functionality
 - E.g. drive control parameters
- Each device includes several profiles covering different functional areas

sercos III

Network

Leads to modularity within a device

sercos III Device

sercos Data Model Overview 2/2

sercos Parameter Model:

- sercos III IDN
 - 4 byte identification number
- Data Block Number
 - Data content
- Parameter Set
 - Multiple parameter sets
- S/P Parameter Bit
 - <u>S</u>tandard or<u>P</u>roduct Specific Parameter
- Structure Element
 - Index of Element to be addressed
- Structure Instance
 - Instance of structure to be addressed

_ SI _	→ S	E 16	12	IDN (S II)		0	
			\top				
er							
					Bit 11 - 0:	Data block number	
					Bit 14 - 12:	Parameter Set ("PS")	
		l l			Bit 15:	S/P parameter ("S/P")	
					Bit 23 - 16:	Structure Element ("Si	E")
					Bit 31 - 24:	Structure Instance ("S	I")

<IDN>.<SI>.<SE> e.g. S-0-1530.2.5

element No.	Description	Requirement			
1	IDN	mandatory			
2	Name	optional			
3	Attribute	mandatory			
4	Unit	optional			
5	Minimum input value	optional			
6	Maximum input value	optional			
7	Operation data	mandatory			
NOTE Elements 5 and 6 are mandatory for cycle time parameters (S-0-1050.x.10, S-0-1002).					

OPC Unified Architecture

- Middleware-technology
- Extends the OLE for process control (OPC) standard
- Established technology for data exchange within factory automation and other applications
- OPC UA Technology
 - Integrates a semantic capable information model
 - Is based on SOA
 - Has platform independency (no Microsoft DCOM)
 - Has TCP/IP based communication protocol
- OPC UA is an industrial de facto standard for higher level interoperability

OPC UA Data Modeling

- Nodes are "atomic entities"
- Nodes are organized within the server address space
- Objects can
 - Include Variables
 - Include Methods
 - Send out Event Notifications
- References
 - Define relations between objects
 - Are typed to express the relationship
- Each OPC UA Server consists of an integrated address space containing information

OPC UA Services

- OPC UA server provides standardized services
- Discovery Service Set
 - Server and endpoint discovery services
 - Servers can register themselves to one discovery server
 - Servers provide own discovery services
 - Useful with complex factory networks
- Secure Channel Service Set
 - Security mechanisms
 - Secure channel establishing between Client and Server
 - Security mechanisms are stack integrated
- Methods Service Set
 - Method invocation services
 - Includes interface definition (input and output arguments)
 - browse and query services for method discovery

Framework concept

- OPC UA based communication between supervisory systems and machine level
- Machine Controller Information Model has standardized and non standardized Information Objects
- Server can be placed
 - On Controller Level
 - On Field Device Level
- Standard models are defined via companion specifications for interoperability
- Non-Standard models include application data and enable flexibility
- Field Device Data is provided within the Server

Conclusions and Outlook

- Machine-to-supervisory communication is essential for holistic optimization of machinery
- Standardized information models facilitate the implementation efforts for machine data integration
- Introduced CIP, sercos and OPC UA data modeling concepts
- ► Communication framework to solve the problems of integration
- Standardization of suitable information models has to be advanced
 - ► E.g. Energy Management, Condition Monitoring
- Work in O.M.I. task force is still in progress

Thank you for your attention!