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Abstract 
 
Industrial Control systems use Ethernet-based protocols such as EtherNet/IP and Modbus TCP for cyclic 
communication to exchange process data, such as inputs, outputs, and motion commands and feedback. 
One limitation of Ethernet is its lack of determinism. For certain applications, like motion control, this has 
led to the development of protocols like SERCOS and EtherCAT, which rely on specialized hardware 
solutions. 
Recently, Ethernet specifications have evolved to include Time Sensitive Networking (TSN) which defines 
features like a Time Aware Shaper (TAS) to achieve predictable transport of Ethernet packets. However, 
not all cyclic communication used in industrial control systems need the determinism offered by TAS, but 
do require a bounded packet latency. TSN defines a feature called preemption that can address this use 
case. 
This paper will provide an overview of TSN preemption and will analyze its use in Ethernet-based 
industrial control communication. A simulator, written in the Python programming language, is described, 
allowing for analysis of varying topologies and cyclic rates. Interfering traffic is introduced to demonstrate 
the effectiveness of preemption to limit the disturbances. 
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Introduction 
 
This paper introduces an Ethernet switch simulator written in the Python programming language. A brief 
overview of how Ethernet bridges (switches) operate is presented first so the reader can better 
understand the simulator description that follows. The high-level information of the simulator includes 
many Python class descriptions for simulating the behaviors of devices like switches, endpoints, and 
cables. Monitors are also described, allowing capture of egressing packets and analyzing bandwidth 
utilization. 
A sample system is described (which uses store-and-forward switching, 100 MB/sec network speed, and 
two express traffic queues) and programmed into the simulator. Two types of devices (with differing 
payload sizes, packet priorities, and cyclic update rates) compose this system, sending their packets to a 
controller device. Simulator output is presented, both with and without interfering traffic and bandwidth 
analysis. 
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Finally, some observations are presented. 
 

Ethernet Switch Behavior 
 
This section provides a brief summary of how today’s modern Ethernet bridges (switches) operate. 
 
Overview 
 
Ethernet bridging was initially defined in the 802.1D IEEE Standard for Local and Metropolitan Area 
Networks: Media Access Control (MAC) Bridges. Ethernet bridges (switches) relay Ethernet frames 
(packets) between devices connected to switches. This is accomplished by copying Ethernet packets 
from one switch port to another, based on the MAC addresses in the packets.  
A switch looks up the destination address contained in a packet in its forwarding, or switching, table to 
determine the outgoing port and egresses the packet out that port toward its intended destination. 
 
QoS – Strict Priority 
 
Strict priority is a queuing mechanism for Ethernet switches. It is defined in 802.1Q-2018 Clause 8.6.8.1. 
In strict priority queueing, the queue with the highest number (class) has priority over the remaining 
queues. When multiple Ethernet frames are queued on an interface for transmission, the queue with the 
highest priority having an Ethernet frame ready for transmission will transmit. Ethernet frames in lower 
priority queues are held until the priority of their queue becomes the highest queue with a ready Ethernet 
frame. 
TSN offers transmission selection (shaping) algorithms that can be bound to higher priority queues which 
determine if such a queue is served before a lower priority queue. 
 
Store-and-Forward Switching 
 
Store-and-forward switching ensures a high level of error-free network traffic. This is because erroneous 
frames are not forwarded across the network. With store-and-forward switching, the switch copies each 
complete frame into the switch memory buffers prior to forwarding. The CRC portion of the frame is used 
to verify the integrity of the received frame. If an error is detected (bad CRC, too short or too long), the 
frame is discarded. If the frame is error free, the switch queues the frame for forwarding out the 
appropriate interface port. 
 
Because an Ethernet switch, when using store-and-forward switching, must store an entire frame prior to 
forwarding, frame latency is dependent upon frame size. This is exacerbated when using large frames 
and daisy-chained architectures typically found in industrial control system designs. 
 
Cut-through Switching 
 
Cut-through switching is where a switch starts forwarding a frame before the whole frame has been 
received. Compared to store-and-forward switching, cut-through switching can offer lower latency but, 
because the frame check sequence appears at the end of a frame, the switch is not able to verify frame 
integrity before forwarding it. Cut-through switching will forward corrupted frames, whereas store-and-
forward switching will discard them. 
Pure cut-through switching is only possible when the speed of the outgoing interface is equal to or lower 
than the incoming interface speed. 
A switch may buffer (acting in a store-and-forward manner) a frame instead of using cut-through under 
certain conditions: 

• Speed: When the outgoing port is faster than the incoming port, the switch must buffer the entire 
frame received from the lower-speed port before the switch can start transmitting that frame out 
the high-speed port, to prevent underrun. (When the outgoing port is slower than the incoming 
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port, the switch can perform cut-through switching and start transmitting that frame before it is 
entirely received, although it must still buffer some of the frame). 

• Congestion: When a cut-through switch decides that a frame from one incoming port needs to go 
out through an outgoing port, but that outgoing port is already busy sending a frame from a 
second incoming port, the switch must buffer some or all of the frame from the first incoming port. 

 
Frame Preemption and Interspersing Express Traffic 
 
The purpose of preemption is to provide reduced latency transmission for time-critical frames in an 
Ethernet switch. Evaluation of preemption is based on the definitions in 802.1Q-2018 Clause 6.7.2 and 
802.3-2018 Section 7 Clause 99 with “express” and “preemptible” configurable in the switches for all 
queues on a per queue basis. 
Frame Preemption specifies procedures, managed objects, and protocol extensions that define a class of 
service for time-critical frames that requests the transmitter in a switched Local Area Network to suspend 
the transmission of a non-time-critical frame and allows for one or more time-critical frames to be 
transmitted. When the time-critical frames have been transmitted, the transmission of the preempted 
frame is resumed. A non-time-critical frame could be preempted multiple times. 
 

 
(a) Non-Critical Frame interruption 

 
(b) Frame Preemption 

Figure 1: Frame Preemption and Interspersing Express Traffic 

 
Figure 1-(a) shows that a large, non-time-critical frame (in blue) may start transmission ahead of the 
desired transmission time of time-critical frame (in green). This condition leads to excessive latency for 
the time-critical frame. Transmission preemption preempts the non-time-critical frame to allow the time-
critical frames to be transmitted as shown in Figure 1-(b). This provides the capabilities of an application 
that uses scheduled frame transmission to implement a real-time control network. 
 
Preemption Examples 
 
One or more queues related to an interface port in an Ethernet switch can be marked as express. This 
allows packets from these queues to preempt packets from non-express queues that are currently being 
egressed. However, this is limited to queues that are both lower priority and are not also marked as 
express. 
Current Ethernet standards only allow one preemption on a port to be active at a time. So, this is unlike 
preemption in task scheduling of operating systems, where it is standard to allow multi-level preemption 
by higher priority tasks. If a packet preempts a non-express packet, the new packet cannot be preempted. 
Following is an example with multiple express queues: 

• QueueA with priority p4, express 
• QueueB with priority p3, express 
• QueueC with priority p2, non-express 
• QueueD with priority p1, non-express 
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Higher values of “px” are higher priority. 
QueueA and queueB are marked as express. This would allow packets of priority p4 or p3 to preempt 
packets with priority p2 or p1. However, packets with priority p4 cannot preempt packets with priority p3. 
in case both queueA and queueB are ready for transmission at the same time, the packet in queueA 
would be selected based on priority. If the transmission of a packet from queueB has already started, 
packets from queueA need to wait for that transmission to complete. 
As a result, the latency for packets from queueA is increased. 
 
Preemption and Packet sizes 
 
During Preemption, a switch splits an egressing packet into two fragments. the preemption algorithm 
adds a four octet Cyclic Redundancy Check (CRC) to the currently egressing fragment and adjusts the 
CRC in the remaining fragment to account for the reduced packet content. Preemption does not provide a 
padding of fragments to meet minimum Ethernet packet sizes (64 octets). Hence, a packet can be 
fragmented after 60 octets as long as there are 64 octets remaining. Thus, a packet must be at least 124 
octets in length in order to be preemptable. Any packet of 123 octets or less cannot be preempted. 
 
Preemption and Cut-through Switching 
 
When using store-and-forward switching, the preemption algorithm knows the size of an egressing packet 
and can determine if sufficient octets remain in order to make a preemption decision. However, when 
using cut-through switching, the switch is egressing a packet as it is ingressing and the switch has no 
knowledge of the number of remaining octets. One workaround is to not cut-through a packet until at least 
64 octets have been received. This diminishes the benefit of using cut-through switching. Another solution 
adopted by many switch suppliers is to only allow cut-through switching for express packets and use 
store-and-forward switching for non-express packets. This second approach is what is currently 
implemented in the Ethernet Switch Simulator. 
 
Physical Interface 
 
Each external port of an Ethernet switch contains a physical layer interface (PHY) consisting of electronic 
circuit transmission technologies. It can be implemented using various hardware technologies with widely 
varying characteristics. It performs encoding, transmission, reception, decoding and provides galvanic 
isolation.  
A PHY translates logical communications into hardware-specific operations to cause transmission or 
reception of electronic (or other) signals. This conversion increases packet latencies and may be different 
for a transmitter compared to a receiver. Since both transmission and reception are necessary, the 
Ethernet Switch Simulator uses an average value for this delay. 

Interference 
 
This section considers the effects of packets that interfere with another packet as it travels to its intended 
destination. Only store-and-forward switching scenarios are considered. 
The effects of store-and-forward switching are shown in Figure 2. A line topology is used for this 
demonstration. Each row in the figure represents an ingress or egress time of a packet to or from a 
particular device or switch in the line. A packet originator (or talker, in TSN terms) and three switches plus 
an end-device (which is the packet destination or target and listener in TSN terms) are shown. 
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Figure 2: Store-and-Forward Packet Timing 

 
Since the format of Figure 2 is used throughout this paper to represent packet timings, here is a brief 
explanation. The top of the figure represents the topology of the network being analyzed. On the left, 
labels describe whether the packets are ingress to or egress from a particular port on a specific switch. 
Rectangles, with packet labels inside, represent packet times, with time flowing from left to right. Packet 
labels like HP0, HP1, and so on, or ‘high priority’ represent high priority packets while terms like int0, int1, 
and so on, or ‘low priority’ are used to represent lower priority packets. A dimension line shows the total 
latency (txmt) for the packet of interest. When two switches’ ports are directly connected (for example, P2 
of SW1 connected to P1 of SW2) egress from one port is equivalent to the ingress of the other. Wire 
speed times are not considered in any diagrams. Switches take time to calculate which packet should be 
forwarded next, represented by tsw. The timing of tsw is from the completion of a packet ingress to the start 
of a packet egress or, in the case of cut-through, after the requisite data has been received. To 
demonstrate maximum interference, all interfering packets in this document’s figures are depicted at the 
latest possible arrival time to still cause interference. 
Interfering traffic can occur when a switch is already transmitting a packet out a particular port and 
another packet, destined for the same port, arrives. This newer packet must wait for the completion of the 
already in-progress packet before it can be sent, as shown in Figure 3. This form of interference can 
happen regardless of packet priorities. 
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Figure 3: Interference by Packet Already In Progress 

 
Another form of interference is when a switch is currently egressing a packet and it receives a high priority 
packet, which it queues, and a lower priority packet, which it also queues. Upon completion of egressing 
the initial packet, the switch chooses to send the higher priority packet first, thus delaying the lower 
priority packet, as shown in Figure 4. 
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Figure 4: Interference by Higher Priority Packet 

 
The above examples demonstrate how a packet travelling through a switch can get delayed due to 
interference. In order to determine maximum packet latencies, the time when packets arrive (ingress) and 
packet priorities must be taken into account. 
In-progress interference occurs when a packet destined for a particular port arrives after the switch has 
already decided to send another packet out that same port. Packet priority has no effect in this case, 
because the decision was made prior to the arrival of a potentially higher priority packet. Assume a high-
priority packet is arriving on port 1 destined for port 2 and a lower priority interfering packet is arriving 
from port 0 or has already been queued or is currently being transmitted out of P2. 
The worst-case scenario occurs when the interfering packet is queued just prior to the switch deciding 
which packet to send next and the high priority packet is queued just after the switch makes this decision. 
In this case, the lower priority packet will be sent prior to the high priority packet. This will cause a delay of 
the high priority packet equivalent to the amount of time remaining to send a packet already in progress, 
which could be the time for the entire packet in the case of starting transmission just before the arrival 
(queuing) of the high-priority packet. 
Without preemption, the full packet transmission time of the lower priority packet will impact the 
transmission of the high-priority packet. However, if the high-priority packet is express traffic and 
preemption criteria is met for the non-express lower-priority packet, preemption can occur and only the 
initial fragment of the non-express packet will impact the transmission of the express packet. The worst-
case delay occurs with the maximum non-preemptable size packet, which is 123 octets. 
The latency introduced by a 123-octet packet that a switch just started to transmit, or committed to 
transmit, is the maximum time an output port can be blocked. A 124-octet packet could be split into two 
fragments after 60 octets. Any larger packet could also be split into two fragments after 60 octets. 
 

Ethernet Switch Simulator Behavior 
 
There are numerous Ethernet switch simulation environments available on the market, but, for various 
reasons (not described in this paper), the author decided to develop one from scratch using the Python 
programming language. The initial goal was to focus on predicting maximum latencies for various 
architectures and types of cyclic traffic when preemption is used. Express queues can be configured to 
support multiple cyclic traffic scenarios (such as motion and I/O). 
The Ethernet Switch Simulator (ESS) attempts to simulate rudimentary Ethernet switch, end device, and 
cable behavior in a network of switches linked together. 
 
Current Feature Level 
 
Currently, the ESS implements: 

• Store-and-forward and cut-through switching 
• Programmable port speeds 
• Programmable number of ports per switch 
• Eight priority queues 
• Preemption 
• Multiple express traffic queues 
• Unicast endpoint addressing 
• Bandwidth utilization measurements 

The current version of the ESS does not support: 
• Redundant connections of any kind (implemented but not yet verified) 
• Multicast addressing 
• Non perfect internal connections of a switch (assumption is that a switch can process wire 

speed on all ports simultaneously) 
• Time aware shaping 
• Time variances between EthernetEndpoints 
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The Ethernet Switch Simulator allows modeling applications that consist of endpoints, switches, and 
cables connected together to form a network structure. Traffic patterns are preloaded into endpoints prior 
to running the simulation. The main architecture consists of several Python classes, as briefly described 
in Table 1. More detailed information is provided in later sections. 
 
Table 1: Ethernet Switch Simulator Classes 

Class Short Description 
EthernetSwitch The EthernetSwitch class simulates basic switch behavior, including 

MAC, queues, and switch firmware execution. It does not consider 
external circuitry like physical interfaces (PHYs). 

EthernetEndpoint The EthernetEndpoint class is the source and destination of all packets. 
It can be used to represent devices like controllers, drives, I/O devices, 
and so on. Packets are queued (For time-based transmission) in 
EthernetEndpoints prior to simulation. 

EthernetCable The EthernetCable class emulates the behavior of PHYs and cables, 
adding a packet delay based on PHY parameters and cable length. 
While transmit and receive PHY delays are not the same in the real 
world, the EthernetCable class assumes a PHY on each end and uses 
a single variable that is the average of the transmit and receive PHY 
delays. 

EthernetPort The EthernetPort object is built into the EthernetEndpoint and 
EthernetSwitch classes, and eventually, the EthernetCable class. It is 
used to manage ingress and egress of packets, along with truncating 
packets when preempted. While a cable in the real world does not 
contain an actual port, the EthernetPort class is used to separate the 
ingress and egress of a packet, because they occur at different times, 
based on the programmed delay. 

EgressMonitor (For time-based transmission) The EgressMonitor class allows 
choosing which ports in the system should be used to monitor egress 
traffic during the simulation, similar to a WireShark capture, which can 
be used to analyze the results upon completion of the simulation. 

 
Instances of the EthernetEndpoint, EthernetSwitch, and EthernetCable classes can be connected 
together in the main program to form a network topology. The main program also provides the capability 
to define packets and packet patterns, choosing data to monitor, and calculating bandwidth utilization for 
selected ports. 
 
Simulation Setup 
 
The main program is where the system and the network traffic to simulate is defined. The current version 
supports multiple device types (like controller, drive, I/O rack, and so on). In addition, safety traffic can be 
simulated as well. The cyclic rate to be simulated can be defined per traffic type and per device (for 
example, 1 msec for motion traffic and 20 msec for safety traffic). Additional traffic patterns could be 
added to a device type to support even more cyclic exchanges for a single device type. By having 
multiple device types, situations comprising multiple cyclic rates can be analyzed. A Python dictionary is 
used to store the desired packet information and the number of devices of each type in the system. A 
single value can be used for the size of packets sent and received by a particular device type or different 
sizes can be chosen for each device of a particular type. An offset of when a packet should be sent within 
a cycle is also available. This value can be static or influenced using a random number generator to 
simulate initial packet egress variances (jitter) in an application. 
Next is to connect the various objects together to represent a system consisting of end devices, switches, 
and cables. In today’s industrial control environment, devices with two external switched ports (enabling 
easy daisy-chaining of devices) are quite common. These devices, referred to as switched endpoints, are 
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constructed using a three-port switch, two that are exposed to outside connections while the third is 
typically connected to the Central Processing Unit (CPU) of the device. Figure 5 demonstrates this 
architecture and will be used in a simulation example. 
 

CPU

P1
3 Port
Switch P2

P0

 
Figure 5: Three Port Switch Diagram 

 
To create a switched endpoint, The ESS allows connecting an EthernetEndpoint directly to an 
EthernetSwitch without an intervening EthernetCable. This is one of the reasons the PHY delay is 
simulated in the EthernetCable class and not the EthernetSwitch class. While the current version of the 
ESS only simulates a standard Ethernet interface for this type of connection, enhancements could be 
made to support other EthernetEndpoint to EthernetSwitch interfaces. To connect one EthernetSwitch to 
another, an EthernetCable object is used. 
The ESS provides several types of EgressMonitors (for example, data capture and bandwidth analysis). 
The next step is to decide what egress data should be captured and assign an EgressMonitor to the 
desired ports on an EthernetSwitch or EthernetEndpoint.  
The last step before running the simulation is to preload the EthernetEndpoints with the desired packet 
patterns defined earlier. 
 
Simulation 
 
The Ethernet switch simulator works on the principle of time slicing. The variable simulationTime allows 
choosing the simulation duration (in nanoseconds). The variable simulationStep is used to choose the 
increment of time (default is 20 nanoseconds). At each time increment, the main program calls the 
process method in each of the aforementioned objects. This method, which is unique to each object type, 
analyzes packet information properties to decide if an action is required, and if so, applies that particular 
action. For example, in the EthernetCable object, a packet must not start to egress until the 2 PHY delays 
and the cable delay have been reached. 
 
Ethernet Packet Classes 
 
The main purpose of the ESS is to simulate the movement of Ethernet packets from sources to 
destinations, tracking salient information (like latency). Output from multiple runs of the simulator (with 
varying interfering packets and with preemption on or off) can be compared to evaluate the influence of 
interference. 
The ESS uses instances of the EthernetPacketState class to track the movement of Ethernet packets 
from their source EthernetEndpoint to their destination EthernetEndpoint. There are two components to 
an Ethernet packet (dynamic and static). The dynamic portion is stored in an instance of the 
EthernetPacketstate class (described later) and contains information that can vary (such as state, 
packetTime, source and destination ports, to name a few) as an Ethernet packet moves within and 
between instances of the EthernetSwitch, EthernetCable, and EthernetEndpoint classes. The static 
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portion is stored in an instance of the EthernetPacket class (described later) and contains information that 
remains constant (such as size, priority, source, and destination addresses, to name a few). 
 
EthernetPacket Class 
 
The EthernetPacket class contains information that remains static (except for preemption) as a packet 
moves through the simulated network. In case a packet is preempted, the existing EthernetPacket 
instance is changed to reflect the new size of the initial fragment and a new instance is created to contain 
the remaining fragment. Table 2 defines various properties of the EthernetPacket class. 
 
Table 2: Major properties of EthernetPacketClass 

Property Description 
Name Unique name of packet. Useful for analyzing results. 
Size Size of packet, in octets. Includes Ethernet header, IP header, payload, 

and CRC. Does not include preamble, Start of Header, or Interframe gap. 
Priority Packet priority, 0 being lowest and 7 being highest. 
SrcAddr String containing address of source EthernetEndpoint instance. 
DestAddr String containing address of destination EthernetEndpoint instance. Used 

by EthernetSwitch instance to decide egress port of packet. 
CreationTime Emulates time at which an endpoint would queue a packet to the Ethernet 

fabric. Used to calculate latencies. 
StartingOffset Allows setting an offset from the Creation Time for when a packet is 

queued. Can be a fixed value to simulate sending a packet at some time 
other than the beginning of a cycle or can be a random number to simulate 
jitter in packet sending from an application. 

Preemptable Boolean indicating whether the packet is preemptable or not. Based on 
packet size and express queues and priority. 

PreemptID Random number generated when a packet is preempted. ID is same for all 
fragments (used to consolidate fragments). 

PreemptFragNum Integer containing fragment number of a preempted packet. 1=first 
fragment, 2=second fragment, and so on. 

 
EthernetPacketState Class 
 
The EthernetPacketState class contains information that may change as a packet moves within a 
EthernetSwitch, EthernetEndpoint, or EthernetCable or as it moves from one entity to another. The ESS 
creates new copies and destroys expired packets as a packet moves through the simulated network. 
Multiple copies of an EthernetPacketState class containing the same EthernetPacket may exist 
simultaneously. For example, an instance of an EthernetPacketState could exist for an egressing packet 
from an EthernetSwitch, ingressing and egressing instances within an EthernetCable, and an ingressing 
packet on another EthernetSwitch, all containing an exact copy of the same EthernetPacket instance. 
Table 3 defines various properties of the EthernetPacketstate class. 
 
Table 3: Major properties of EthernetPacketState class 

Property Description 
State Enum used to denote the state of an instance of an EthernetPacketState 

class. 
StartTime Denotes the time at which a packet entered the state. 
EndTime Denotes the time at which a packet is expected to exit the state.  
gapTime Captured for egressing only. Denotes any gap between this packet and 

the previous packet. Does not include interframe gap time. 
pktTime Time needed to transmit or receive a packet based on the current port 

speed. Does not include preamble, start of header, or interframe gap. 
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Property Description 
inPort Ingressing port of the packet. 
Outport Egressing port of the packet. 
EthernetPkt Instance of an EthernetPacket class containing the static information for a 

packet. 
 
Packet States 
 
As an Ethernet packet moves through the simulated network, it may exist in various states during its 
journey. In fact, the same packet may exist in multiple states simultaneously (for example, egressing in 
one device while ingressing in another). Table 4 describes the various states of a packet as it is 
processed by the ESS. 
 
Table 4: Ethernet Switch Simulator Packet States 

State Enum Description 
EGRESS_SCHEDULED This is the initial state when an EthernetPacketState instance is 

created by the main application in an EthernetEndpoint.  
INGRESSING_PREAMBLE This state indicates that the preamble and start of header portion of an 

Ethernet transmission is occurring at the ingress of a switch, cable, or 
endpoint. 

INGRESSING_IFGAP This state indicates that the interframe gap portion of an Ethernet 
transmission is occurring at the ingress of a switch, cable, or endpoint. 

INGRESSING_PACKET This state represents the time needed to ingress a packet. 
CABLE_QUEUED If the transmission time of a packet is shorter than the delay configured 

for an instance of an EthernetCable class, the packet is stored in the 
instance and is set to this state. 

QUEUE_PENDING A packet enters this state upon completion of the 
INGRESSING_PACKET state. This state represents the time for a 
switch to execute items like CRC processing, address lookup, and 
queuing the packet. 

QUEUED This state simulates the time needed by a switch to evaluate which 
packet should be egressed next. 

QUEUED_FRAGMENT If preemption occurs, the remaining fragment is stored here for later 
egress and set to this state. 

EGRESSING This state represents the time needed to egress a packet. 
PREEMPTED_EGRESSING This state is used to alert receiving devices that the packet being 

ingressed has been shortened due to preemption. 
RECEIVED_FRAGMENT Received fragments are stored here until the last fragment is received, 

at which time the packet is reassembled and queued. 
RECEIVED_IN_ENDPOINT This is the terminal state of a packet, when it arrives at its final endpoint 

destination. 
 
Ethernet Switch Simulator Parameters 
 
Table 5 describes many of the variables used to control the desired simulation scenario. Each of these 
variables can be changed in the application defining the scenario to be simulated. Various time units are 
provided in the output of the Ethernet Switch Simulator, but the simulator uses nanoseconds (nsec) for all 
internal calculations. 
 
Table 5: Common Simulation Parameters 

Variable Name Description 
QueueingTime Value used to simulate the time (after the last octet of a packet is received) a 

switch needs to complete the reception of a packet and place it into a queue. 
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Variable Name Description 
processingTime Value used to simulate the time it takes a switch to evaluate its egress queues 

contents to decide which packet to egress. 
Preempt Tuple containing preemptable priority queue numbers. Empty for no 

preemption. 
preemptionTime Value used to simulate the time it takes a switch to evaluate its express 

queues contents to decide which packet to egress. 
cutThrough Boolean (True = use cut-through, False = use store-and-forward. 
cutThroughTime Value used to simulate time it takes a switch to make a cut-through decision 

after “cutThroughOctets” are received. 
cutThroughOctets Value representing the number of octets that must be received by a switch 

before it can decide whether the packet can be cut-throughed. 
phyDelay Value representing the average delay time of the Ethernet physical interface. 
simulationTime Value representing the time period to simulate. 
simulationStep Value used to increment the simulation time for each step of the simulation. 
portSpeed Default port speed for all Ethernet ports in the simulation. 
cableLength Value (in meters) used for simulating delays introduced by Ethernet cables. 

 
Addressing 
 
To simulate packet addressing, the Ethernet Switch Simulator assigns a property of type string to 
instances of EthernetEndpoint classes during their creation. It uses a recursive algorithm to preassign 
address lookup tables in instances of EthernetSwitch classes as the network is constructed. Upon 
receiving a packet, the EthernetSwitch can use this information to determine the correct destination port 
and that no external address lookup is required. 
 
EthernetEndpoint Class 
 
The EthernetEndpoint is a single port device. When connected directly to an EthernetSwitch, a switched 
endpoint can be simulated. If connected to an EthernetCable, it can represent a device with a single 
Ethernet port. Prior to executing the simulation, packets are queued in EthernetEndpoints representing 
the Ethernet traffic to simulate. Currently, only a single queue is implemented, so support for multi-cycle 
patterns, where a slower cycle pattern may need to be distributed over several fast cycles, is not 
supported. Note, this scenario may exist when a controller is sending packets to multiple devices at 
different cyclic rates. 
The current queuing of packets in the ESS is designed for device to controller communication. Packets 
are queued cyclically, starting with data packets, followed by safety packets, if applicable, and then 
interfering packets (if selected). The number of interfering packets (and their size) can be configured. 
Interfering packets are queued in non-express queues and are used to simulate best-effort traffic that 
could affect cyclic traffic. 
 
Creating Packets 
 
The schedulePacket method is used to create packets in the EthernetEndpoint instances prior to 
simulation. The schedulePacket method takes the following arguments: 

• pktSize: Size of packet (not including preamble or IF Gap) in octets. 
• destAddr: Final destination address for packet. 
• priority: Queue number for QoS, 7 being the highest, 0 the lowest. 
• startTime: Desired start of egress, in nanoseconds. 
• Offset: Offset from startTime for packet egress. Can be used to add random jitter or to 

represent a cyclic offset. 
• pktName: name to identify packet as it traverses through the network. All packets in the 

simulation are uniquely named to assist in analyzing output. 
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EthernetCable Class 
 
The EthernetCable class is used to simulate the delay effects of Ethernet physical interfaces and Ethernet 
cables. It is a two-port device supporting bidirectional packet flow. The current implementation uses 5 
nsec delay for each meter of cable, representing the typical delay of twisted-pair medium. Because there 
is an Ethernet physical device at each end of a EthernetCable, the delay from ingress to egress is two 
times the physical interface delay plus 5 times the cable length. 
For large packets, where the transmission time exceeds the delay calculated by the EthernetCable 
instance, a packet can be both ingressing and egressing at the same time. If the transmission time of the 
packet is shorter than the EthernetCable delay, the packet is queued in the EthernetCable instance. 
 
EthernetSwitch Class 
 
The EthernetSwitch class is used to simulate the behavior of an Ethernet switch (sans a physical 
interface, which is simulated in the EthernetCable class). Fundamentally, the EthernetSwitch is 
responsible for receiving an ingressing packet and, at some later time, egressing that packet out the 
appropriate interface port. The number of ports and their speed can be chosen when the class in 
instantiated. Several options (such as switching method and express queues) can also be chosen. The 
following sections describe the EthernetSwitch behavior based on these options. 
 
Store-and-Forward Switching Behavior 
 
In store-and-forward switching (without preemption), an Ethernet switch must receive the last octet of a 
packet before it can begin any processing of that packet. This consists of validation of its contents via a 
cyclic redundancy check (CRC), determining the correct egress port, and placing it in the appropriate 
QoS queue of that port. The queuingTime is used to simulate the time a switch needs to perform those 
actions, represented by the QUEUE_PENDING state. The EthernetSwitch uses the address lookup table 
(created during the network construction) to decide which port should be used to later egress the packet. 
Upon completing of the queuingTime, the packet is placed in the appropriate queue and its state is set to 
QUEUED, where it remains until the time represented by the processingTime variable has elapsed. This 
simulates the time an Ethernet switch needs to evaluate port queue contents to determine which packet 
to next egress out of a port. Switches are constantly performing this activity, even when packets are 
currently egressing thus enabling contiguous egress (back-to-back) of packets separated by only an 
Interframe gap. The ESS simply uses this value as the minimum time a packet must be queued before it 
will be available for egress. When a port is not egressing a packet, the EthernetSwitch examines the 
queued packets in order of priority. If a packet is ready for egress (the processingTime has expired), the 
packet is moved to the EGRESSING state and egress begins. Therefore, if multiple packets are 
simultaneously available for egress, the packet with the highest priority will be chosen. The packet will 
remain in the EGRESSING state until the last octet of the interframe gap time has been reached.  
 
Cut-through Behavior 
 
Cut-through switching can occur after a fixed-length portion of a packet (as specified in the 
cutThroughOctets variable) has elapsed. After this time has elapsed and if the packet’s destination queue 
supports cut-through, it is copied and its state is set to QUEUED, using the time provided by the 
CutThroughTime variable. If the egress port is free after this time has elapsed, the EthernetSwitch begins 
egressing the packet while continuing to ingress the remainder of the packet. If the output port is in use 
(blocked) and preemption is disabled (that is, no express queues are present), the packet will be treated 
using store-and-forward. The ESS does not support immediate egress upon completion of the packet that 
blocked cut-through.  
 
Preemption Behavior 
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This section describes the EthernetSwitch behavior when preemption is enabled. Two cases need to be 
considered; with and without cut-through switching. 
When cut-through switching is enabled, only express packets utilize cut-through. Non-express packets 
always use store-and-forward switching. This is because remaining octets are unavailable when using 
cut-through switching (unless the number of octets that must be received to make a cut-through decision 
exceed the minimum Ethernet packet length). Hence, non-express packets are treated as described in 
the previous section regarding store-and-forward switching. 
Processing of packets with preemption enabled remains the same as described in the store-and-forward 
and cut-through switching sections through the QUEUE_PENDING state. Once the time expires for a 
packet in the QUEUE_PENDING state, it moves to the QUEUED state. Express packets use the 
preemptionTime variable to decide when they can exit the QUEUED state where non-express packets 
use the processingTime variable as previously described.  
With preemption enabled, the EthernetSwitch no longer waits until an egressing packet completes to 
choose which packet is egressed next, but will examine the express queues if the egressing packet is a 
non-express preemptable packet and is at a point where it can be successfully fragmented. If preemption 
can occur, the currently egressing packet is truncated and an additional 4 octets will be added to simulate 
the required CRC octets. The state of the fragmented packet is set to PREEMPTED_EGRESSING, its 
size and endTime adjusted, and the properties related to fragments in the EthernetPacket instance will be 
adjusted. In addition, the remaining fragment will result in the creation of a new EthernetPacketState 
instance with the size of the remaining octets. The fragment properties of this instance are adjusted to 
indicate that this is the next fragment, the state is set to QUEUED_FRAGMENT, and it is queued for next 
egress (provided there are no express packets to egress). Finally, the preempting packet will egress upon 
completion of egressing the initial fragment. 
 
EthernetPort Class 
 
The EthernetPort class is instantiated for every port in an EthernetSwitch, EthernetEndpoint, and, in the 
future, EthernetCable class (device) instance. It is responsible for egressing and ingressing of packets, as 
well as understanding any connection between the devices. Understanding the connections is paramount. 
If a packet is egressing on a port connected to another port, then it must also be ingressing on the 
connected port. If preemption occurs, both ports must be adjusted to reflect the change of the preempted 
packet. This is one of the responsibilities of the EthernetPort class. 
 

Simulation Example 
 
This section will describe the use of the ESS to analyze a simple system (shown in Figure 6). This simple 
system consists of a controller, 6 servo drives (ServoDrive 1-6), and 2 rack I/O devices (BlockI/O 1-2). 
This system is programmed in the ESS to analyze Ethernet packet latencies and the influence of 
interfering traffic. EtherNet/IP implicit cyclic messaging is used, with the servo drives communicating at a 
cyclic rate of 1 msec and the rack I/O communicating at a cyclic rate of 4 msec. Only device to controller 
traffic is considered. A baseline is first established to determine minimum packet latencies. The focus of 
the analysis will be on packets from ServoDrive1 and BlockI/O1, because these are furthest from the 
controller and will have the greatest latencies. 
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Sw1 Sw2 Sw3 Sw4

Sw5Sw6Sw7Sw8

Sw9

Block I/O1 ServoDrive1 ServoDrive2 ServoDrive3

Block I/O2ServoDrive4ServoDrive5ServoDrive6

Controller

Cable 1 Cable 2 Cable 3

Cable 4

Cable 6Cable 7

Cable 8

Cable 7 Cable 5

 
Figure 6: Sample Simulated System 

 
Table 6 contains the parameters used for the simulation. The content of the table is direct output from the 
ESS. For this simulation, all cable lengths were set to zero. 
 
Table 6: Simulation Parameters 

Sim Parameter Value Unit 
Queueing Time 800 nsec 
Processing Time 700 nsec 
Preemption 6, 7  
Preemption Time 500 nsec 
cut-through FALSE  
Cut-through Time 400 nsec 
Min CT Octets 14 octets 
Cable Length 0 meters 
PHY Time 500 nsec 
Sim Time 30000 usec 

 
Packet Size 
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To aid users of the simulator, only the payload of packets needs to be defined. The simulator will then 
add 74 octets (not including header, start of frame delimiter, or interframe gap) of overhead to account for 
Ethernet and CIP headers (see Table 7). UDP transport is assumed (50 octets) and implicit CIP I/O 
messaging (24 octets). If the resulting addition is less than the minimum required Ethernet packet size, 64 
octets is used, because this is the minimum legal Ethernet packet size. 
 
Table 7: Ethernet Packet Overhead 

Ethernet Frame Octets 
Preamble 7 
Start of frame delimiter 1 
Inter-packet Gap 12 
MAC Destination 6 
MAC Source 6 
802.1Q Tag (optional) 4 
Ether Type 2 
Frame Check Sequence 4 
IP V4 20 
UDP 8 
CIP IO Overhead 6 
EIP Overhead 18 

 
Device Characteristics 
 
Table 8 describes the device characteristics being simulated. The types of devices, cyclic packet rate, 
quantity, data payload, packet size, and packet priority are provided. This table is actual output from the 
ESS. 
Two types of devices are shown (a drive and a block I/O device). From the table, it can be seen that there  
6 drives and 2 block I/O devices in the simulation. For example, the drive sends 90 octet packets (16 
octets of payload and 74 octets of overhead) with a priority of 7 every 1 millisecond.  
 
Table 8: Simulated Device Characteristics 

Device 
Type 

Cycle 
time 
(us) 

num 
dev payload 

Pkt 
Size Priority 

Servo 
Drive 1000 6 16 90 7 
Block I/O 4000 2 251 325 6 

 
Baseline 
 
In order to evaluate the effects of interfering traffic on cyclic traffic, a baseline, without any ancillary traffic, 
must first be established. This section will examine, in detail, the simulator output for two communication 
cycles without any interfering traffic. 
 
Table 9 shows output from the ESS for the first 2 milliseconds of simulation. All times are in 
nanoseconds. It contains information regarding packets egressing from sw9, which is connected to the 
controller. Note, the simulator can capture egress packets from any port. During the first millisecond, all 
devices send packets while during the second millisecond, only the servo drives send packets, which are 
expected to be received by the controller. This is because the block I/O devices only send packets every 
4 milliseconds and the servo drives send packets every 1 millisecond.  
The table also illustrates the packet naming convention used by the ESS. Every packet in the simulation 
is given a unique name. the first portion of the name is the name of the initiating device (for example, 
servoDrive2, BlockIO1) followed by a packet number, which starts with 1 and is incremented each time a 
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device sends a new packet (for example, pkt 1, pkt 2, and so on). Thus, a packet with the name 
servoDrive2-pkt7 is the seventh packet sent by the device named ServoDrive2. 
It is interesting to note that during the first cycle, the packets from ServoDrive1 and ServoDrive2 are 
delayed due to the presence of the packet from the BlockI/O2 device. This is not the case for the second 
cycle. In a line topology, when all devices send the same size packet at the same time, a gap is created 
(equivalent to the switch delay plus the PHY and cable delays) provided this gap is greater than the 
interframe gap time. The gap time shown in the table represents an excess gap time, not including the 
interframe gap. Thus, a gap of zero means only the interframe gap is present. 
 
Table 9: Baseline Simulation Results 

start time gap time Latency Pkt Name 
19680 19680 27520 ServoDrive6-pkt1 
30020 1540 37860 ServoDrive5-pkt1 
40360 1540 48200 ServoDrive4-pkt1 
61040 11880 68880 ServoDrive3-pkt1 
145040 75200 171680 BlockI/O2-pkt1 
172640 0 180480 ServoDrive2-pkt1 
181440 0 189280 ServoDrive1-pkt1 
261260 71020 287900 BlockI/O1-pkt1 
1019680 730820 27520 ServoDrive6-pkt2 
1030020 1540 37860 ServoDrive5-pkt2 
1040360 1540 48200 ServoDrive4-pkt2 
1061040 11880 68880 ServoDrive3-pkt2 
1071380 1540 79220 ServoDrive2-pkt2 
1081720 1540 89560 ServoDrive1-pkt2 

 
Table 10 provides a summary of the minimum and maximum packet latencies (in nanoseconds) for the 
Servo Drive and Block I/O device furthest from the controller (ServoDrive1 and BlockI/O1). This table was 
generated by a script that uses a regular expression (shown in column 1 of the table) where the asterisk 
character will match all packet numbers from ServoDrive1 and Block I/O1 in the simulator output to 
extract minimum and maximum latencies. 
 
Table 10: Summary, baseline Minimum and Maximum Latencies 

Pattern Min max 
ServoDrive1-pkt* 89560 189280 
BlockI/O1-pkt* 287900 287900 

 
Interference 
 
The ESS can generate interfering packets to allow analyzing the effect on cyclic communication. The 
ESS allows specifying a single packet size, priority, and number of interfering packets per cycle. The ESS 
queues up interfering packets directly after each cyclic packet for each device. Hence, if 5 interfering 
packets are programmed, each device will send its cyclic packet followed by 5 interfering packets at the 
specified cyclic rate. Thus, each servo drive would send 5 interfering packets every 1 msec cycle and 
each rack I/O device would send 5 interfering packets every 4 msec cycle. 
Table 11 shows the effect on packet latency for various quantity and sizes of interfering packets. Column 
2 considers 5 interfering packets of size 123 octets, column 3 for 50 interfering packets of size 123 octets, 
column 4 for 1 750 octet interfering packet, and column 5 for 1 1500 octet interfering packet. 
 
Table 11: Summary, Latencies with Preempted Interference 

Pattern 5-123 50-123 1-750 1-1500 
ServoDrive1-pkt* 199540 216180 191520 190360 
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Pattern 5-123 50-123 1-750 1-1500 
BlockI/O1-pkt* 318660 343620 297940 291200 

 
As expected, the largest latencies occur with 123 octet packets, because these cannot be preempted. For 
the larger packets, the maximum influence occurs during the first 60 or last 64 octets of transmission, 
because preemption cannot occur during these times. If preemption is requested during the first 60 octets 
of transmission, it will wait until that time before preempting. 
 
Bandwidth Analysis 
 
The ESS provides a capability to calculate the bandwidth utilization for individual output ports. Table 12 
shows the bandwidth utilization when no interfering packets are present and Table 13 shows the 
bandwidth utilization when 50 interfering packets are present. 
For each table, four time ranges (in msec) and bandwidth (in percent) for four switches are shown. The 
sw1 column represents the bandwidth on the output of sw1 connected to sw2, the sw2 column represents 
the bandwidth on the output of sw2 connected to sw3, the sw3 column represents the bandwidth on the 
output of sw3 connected to sw4, and the sw9 column represents the bandwidth on the output of sw9 
connected to the controller. 
For the case where no interfering packets are present, the bandwidth utilization is quite reasonable. As 
expected, during the first msec, the bandwidth used is higher than the 2nd, 3rd, and 4th msec due to the 
presence of packets from the rack I/O devices. 
 
Table 12: Bandwidth Analysis, 0 Interfering Packets 

Start Time End Time SW1 SW2 SW3 SW9 
0 1 2.76 3.64 4.52 10.8 
1 2 0 0.88 1.76 5.28 
2 3 0 0.88 1.76 5.28 
3 4 0 0.88 1.76 5.28 

 
With 50 interfering packets per cycle, the bandwidth utilization is quite different. Because the current 
implementation of the ESS does not support multiple queues in an EthernetEndpoint, it is important to not 
schedule more than 100% bandwidth utilization at an EthernetEndpoint. Because the ESS can monitor 
any egress port, a separate simulation (not shown) was run to determine the bandwidth usage for each 
EthernetEndpoint, which concluded that the servo drives with 50 interfering packets per cycle only used 
58.08% of the bandwidth on the connection between the servo drive and its switch. 
The Ethernet switches starting with sw3 are overloaded with packets, as demonstrated by 100% 
bandwidth usage, but due to priorities, the servo drive and rack I/O packets get through, albeit with some 
additional latency, as demonstrated in Table 11. Overloading the switches along with longer simulation 
times can allow the simulator to approximate worst-case latencies. 
 
Table 13: Bandwidth Analysis, 50 Interfering Packets 

Start Time End Time SW1 SW2 SW3 SW9 
0 1 59.96 98.802 98.912 95.998 
1 2 0 77.318 100 100 
2 3 0 58.08 100 100 
3 4 0 58.08 100 100 

 
Theoretical evaluations show that the worst-case latency impact that can occur is when a 123-octet non-
express packet begins egressing just before an express packet is ready for egress. This is because a 
packet of 123 octets is the maximum non-preemptable packet size. At 100 MB/sec, a 123-octet packet 
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consumes approximately 11 µsec of the network (including preamble, start of header, and interframe 
gap). In the worst-case situation, this interference would occur at each switch (hop). In our simulation 
example, interfering packets are generated by the devices, so the I/O packet from BlockI/O1 has 7 
switches where this could occur (sw2 – sw8), resulting in a theoretical latency impact of 77 µsec. looking 
at the simulation results when interference is present (see Table 10 and Table 11) the maximum latency 
variance is for the packet from BlockI/O1 with 50 interfering packets (approximately = 56 µsec). Further 
experimentation (using longer simulation times and more interfering packets) results in approaching the 
theoretical maximum influence (not shown). This is understandable, because the theory requires an 
interfering packet to begin egress just before and express packet is ready for egress at every switch. 
 

Conclusions 
 
This paper presented simulation as one method for analyzing cyclic EtherNet/IP traffic in a network. 
Switch behaviors were described along with how interference can affect egressing packets. A simulator 
based on the Python programming language was described and its usage was demonstrated on a simple 
line topology network consisting of two types of traffic at different priorities and cyclic rates. Even this 
simple system offers some observations which may not have been intuitively obvious; that even without 
interference, the packets received at the controller are not in the order of the devices on the network (that 
is, the packet from BlockI/O2 does not occur after the packet from ServoDrive4, but rather after the 
packet from ServoDrive3). This is due to store-and-forward switching and the I/O packet size being 
significantly larger than those of the servo drives. Attempting to analyze even this simple system in an 
Excel workbook would be extremely complex, especially if one wanted to examine variance such as 
store-and-forward vs. cut-through, preemption vs. no preemption, packet size and priority variations, and 
so on. 
The ESS described in this paper allows analyzing complex network topologies and cyclic data patterns by 
simply making a few changes to the main program file and re-running the simulation.  
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