
2022 ODVA Industry Conference 1 ©2022 ODVA, Inc.  

Current Developments in xDS Device 
Descriptions 

 
Matthew Frazer 

ODVA, Inc. 
 

Todd Snide 
Schneider Electric 

 
Presented at the ODVA 

2022 Industry Conference & 21st Annual Meeting 
March 9, 2022 

San Diego, California, USA 
 

Abstract 
 
The Special Interest Group for xDS Digital Device Descriptions is working to develop a specification for 
ODVA’s next generation of device description, as a robust, extensible, and secure artifact. This paper will 
describe the current state of the art in the development of xDS. The paper will include details about the 
use of AutomationML constructs to describe components, the use of Open Packaging Conventions to 
package the various components, security approaches, and proposed tools to ease the adoption of xDS. 
 
As the specification for xDS is developed, some of the details provided in this paper may change, but it 
will provide a general overview of the current direction of the xDS SIG. 

Abbreviations 
 
AML  –  AutomationML (Automation Markup Language) 
CAEX  – Computer Aided Engineering Exchange 
CIP  –  Common Industrial Protocol 
DoC – Declaration of Conformity 
EDS  –  Electronic Data Sheet 
ICS  –  Industrial Control System 
IRDI – International Registration Data Identifier 
OPC  –  Open Packaging Conventions 
SIG  –  Special Interest Group 
 
  



2022 ODVA Industry Conference 2 ©2022 ODVA, Inc.  

Introduction 
 
With ever increasing interconnectivity of machines and processes, and escalating demands for device 
data, the need exists to provide a more robust and secure device description for CIP™ devices than can 
be achieved using the current EDS file. Initiated February 2019, the xDS Digital Device Descriptions SIG 
has been working on developing such a replacement.  
 
The goal is to provide a scalable digital device description which is as simple and reusable as possible 
while still providing a means of representing the rich, robust information provided in CIP. The xDS artifact 
provides the necessary information to tools to be able to configure, monitor, control, diagnose, and 
conformance test CIP devices in an Industrial Control System (ICS) over the network. The primary 
workflows for which xDS provides information to the tool are: 
 

• Network and Security Configuration 
• Device Configuration 
• Network Diagnostics 
• Device Diagnostics 
• Device Conformance 

 
Similar to EDS files, the xDS artifact may be embedded within the device itself or provided through some 
other external means such as a website or device description database. While xDS is being designed to 
be applicable to any CIP network, the primary focus at this time is for EtherNet/IP networks.  
 

 
Figure 1 - Typical interaction of xDS, Tools, and ICS 

 
This paper represents the current understanding and proposal for the xDS representation, as developed 
by the xDS SIG. Four main topics will be discussed. First, the use of AutomationML constructs is 
presented as a basis for modeling device information such as features and configuration parameters. 
Second, a packaging scheme and format is presented for aggregating various components of differing 
formats into a single, compact, logically arranged artifact. Third, a discussion of security considerations 
and the proposed approach, and finally, a proposal for some tools to aid in the adoption of xDS.  

Choice of AutomationML as a Device Description Modeling Language 
 
The xDS SIG investigated several approaches for representing device description information and has 
settled on the use of AutomationML (AML). AutomationML is an XML based, object-oriented data 
modeling language developed for representing plant engineering information, based on the 
representation format of CAEX as defined in IEC 62424 [1]. AML is an open standard, and its 
specifications may be implemented on a royalty-free basis. 
 



2022 ODVA Industry Conference 3 ©2022 ODVA, Inc.  

AML is a logical choice as the base description language for xDS, as it was developed specifically for the 
purpose of automation data exchange. It uses existing industry data formats specifically designed for 
storage and exchange of different aspects of engineering information. AML interconnects engineering 
tools. 
 
The AutomationML Organization supports and maintains AutomationML. This organization has celebrated 
its 15th anniversary. Membership has continued to grow within the AutomationML Organization 
highlighting the stability and improvement of the organization as a standards consortia. Several 
technologies related to the automation industry have already adopted use of AML, such as the Asset 
Administration Shell for Industrie 4.0. [2]  
 
AML has a defined structure which is flexible and extensible, allowing predefined ODVA structures to be 
built on top. Additionally, some tooling has already been implemented to simplify the development of xDS. 
The AutomationML Editor provides a logically oriented, graphical tool to aid in the initial design and 
testing of xDS concepts. The AML Engine library provides a freely available library based on the .NET 
framework for processing and editing AML files. Because AML is based on the XML format, support for 
platforms other then .NET can easily be adapted, and many have already been demonstrated.  

Modeling CIP Devices Using AutomationML 
 
Details about AutomationML are beyond the scope of this paper. However, the following basic AML 
concepts are required to understand the xDS approach. There are three types of AML classes used by 
xDS:  

• Role Class – Provides abstract semantic information about an object.  
• System Unit Class – Represents a specific type of object. A System Unit Class can reference one 

or more Role Classes to represent the roles the object performs. 
• Interface Class – Models an interface between components. 

 
Each of these types of classes can be collected into libraries of similar classes and can inherit from other 
classes in the same library or from another referenced library. Along with these class libraries, AML 
allows the definition of custom attributes, collected into an Attribute Class library. A set of common AML 
base libraries are defined, from which more specific classes can be inherited. 
 
For xDS, a set of standard libraries is created from the AML base libs to define the Role Classes, 
Interface Classes, and custom CIP attributes required to describe a CIP device. These libraries comprise 
the ODVA xDS Primitives, which will be an ODVA-provided reference library to be used by any tools 
creating or interpreting an xDS. Specific device descriptions are created as a System Unit Class 
referencing the CIP role classes and interface classes. The format of this device description will be 
defined in the xDS specification (noted in Figure 2 below as the CIP Device Description Model). This 
creates a layered approach, as shown in Figure 2.  
 

 
Figure 2 - xDS Layers 



2022 ODVA Industry Conference 4 ©2022 ODVA, Inc.  

Figure 3 below shows the interactions between these components, where a specific xDS device 
description references the ODVA xDS Primitives definition file, and any tool interpreting the xDS will 
require the primitives to fully understand the xDS definitions.  
 

 
Figure 3 - Interaction of xDS and ODVA xDS Primitives 

The CIP Device Description Model is based on AutomationML principles for modeling communications 
components [3]. A CIP device is modeled with a physical device description, and a logical device 
description. The physical device describes identification information. The logical device provides 
constructs to describe the logical interfaces of the device, such as parameters, assemblies, and IO 
connections. Figure 4 shows a simplified diagram of the device model.  
 
 

 
Figure 4 - CIP device Description Model 

 



2022 ODVA Industry Conference 5 ©2022 ODVA, Inc.  

This structure is accomplished through a set of custom Role classes in the ODVA xDS Primitives library 
which inherit from the AML CommunicationRoleClassLib. The physical device is modeled inheriting from 
the AML PhysicalDevice Role class, and attributes are defined for required CIP device identification. The 
inherited role classes EtherNetIPDevice and DeviceNetDevice provide a means of distinguishing between 
the two. (It should be noted that xDS development is focusing on EtherNet/IP, but efforts are being made 
to ensure that the design is able to be adopted to DeviceNet in the future). Figure 5 shows the physical 
device role classes and associated attributes, as visualized using the AutomationML Editor [4]. 
 
 

 
Figure 5 - Physical Device Constructs 

 
The logical device is modeled as CIPDeviceDescription, inheriting from the AML LogicalDevice Role 
class. The logical device is further broken down into several collections of components. The 
ConnectionList collects a list of supported IO connection definitions. The ParameterGroup component is 
used to collect a list of Parameter definitions. Multiple ParameterGroup instances may be included as a 
means of grouping common parameters together. Likewise, the AssemblyList component is used to 
collect a list of Assembly interface definitions. Multiple AssemblyList instances may be included. The 
FeatureList component is used to collect predefined feature declarations, such as DLR support. Finally, 
the CIPObjectModel role class provides constructs to declare the entire CIP Object model supported by 
the device. This is used to declare all supported public CIP objects with declaration of supported 
attributes and services. Details about how the FeatureList and CIPObjectModel components will be 
modeled have not yet been determined. Figure 6 shows these logical device constructs. 
 
 

 
Figure 6 - Logical Device Constructs 

 
Three custom interface classes are defined in the xDS Primitives file for modeling the key CIP interfaces 
to device configuration information. The Parameter interface class is used to declare configuration 
parameters in the same way as the EDS ParamN. By leveraging AML constructs and flexibility, the ability 



2022 ODVA Industry Conference 6 ©2022 ODVA, Inc.  

exists to define parameter dependencies, complex range requirements, multi-language help strings, 
International Registration Data Identifier (IRDI) references, and other custom information to the 
parameter. The Connection interface class provides constructs to declare supported I/O connections. 
Finally, the Assembly interface class is used to declare supported assemblies and their data layout. 
Figure 7 below shows the interface class library entries. 
 

 
Figure 7 - Interface Classes 

CIP Device Model Example 
 
A simple reference device based on a software simulation of a General Purpose Discrete IO is used to 
demonstrate creating an xDS device description. The device consists of four discrete input points and 
four discrete output points, and follows the device profile as described in Volume 1 of The CIP Networks 
Library. There is a configuration assembly (instance 100), input assembly 3, and output assembly 33. For 
demonstration purposes, several configuration and diagnostic parameters have been defined. Details are 
presented below in Table 1 and Table 2. 
 
Table 1 - Reference Device Identity 

Vendor ID 24 – ODVA 
Device Type 7 – General Purpose Discrete IO Device 
Product Code 20 
Revision 1.001 
Product Name Virtual Discrete IO Device 

 
  
Table 2 - Reference Device Object Model 

Object Instances 
Identity 1 
Message Router 1 
Ethernet Link 1 
TCP/IP Interface 1 
Connection Manager 1 
Assembly 3, 33, 100 
Discrete Input Point 1, 2, 3, 4 
Discrete Output Point 1, 2, 3, 4 

 
 
Using the proposed CIP Device Description Model and the ODVA xDS Primitives libraries, the reference 
device is modeled as shown in Figure 8. A System Unit Class library named ODVADemo is the top-level 
container for the device description. Multiple device descriptions could be created within this container to 
describe a number of related devices such as a product family. A physical device description with the 
name “Virtual Discrete IO” is created with the role EtherNetIPDevice. The device Identity information is 
stored in attributes associated with the EtherNetIPDevice role class. 



2022 ODVA Industry Conference 7 ©2022 ODVA, Inc.  

 
Figure 8 - Reference Device Modeled in AML Using xDS Constructs 

 
The logical device description is modeled within the element named “CIP Device Description”. This 
element includes three ParameterGroup containers, one for configuration parameters, one for diagnostic 
parameters, and one for connection parameters. These groupings can be made in any way the xDS 
creator sees as helpful.  
 
The AssemblyList contains all published assemblies. Figure 9 below shows the layout of the input 
assembly instance 3. The member list in this example consists of four entries of type AssemblyMember 
labeled DI1Value, DI2Value, etc. Each of these entries includes a reference to one of the four digital input 
value parameters defined in the parameter group section. The member list is flexible, allowing various 
constructs to be referenced and individual bitfields to be defined. 
 

 
Figure 9 - Assembly Attributes 

 
In the same way, the ConnectionList contains all the connection definitions. A connection definition 
contains the standard set of attributes required to define an IO connection as shown in Figure 10. 
 



2022 ODVA Industry Conference 8 ©2022 ODVA, Inc.  

 
Figure 10 - Connection Attributes 

 The design for describing the CIP Object Model section and the Feature List section has not been 
completed at this time, so our model of the General Purpose Discrete IO device does not include 
completed entries for those sections. However, this modeling exercise has demonstrated a proof of 
concept for using this approach. 

Use of Open Packaging Conventions to package xDS Components  
 
Along with the device information model which may be represented using AutomationML, there are 
various additional components which may be needed within the device description. These may include 
icons and graphics, user manual, Declaration of Conformity, and other vendor-specific files. There is also 
the desire to support multiple similar devices of a product family within a single xDS artifact, as well as 
multiple revisions of the same device. To aggregate these various components into a single, organized, 
compact artifact, Open Packaging Conventions is used.  
 
The Open Packaging Conventions (OPC) originated out of the Office Open XML file formats for 
representation of Microsoft Office documents. The OPC specification has been standardized in ISO/IEC 
29500-2 [5] and ECMA-376 [6]. The specification provides a framework for structured storage of 
information within a file which itself is just a “zip” file. The specification allows for the expression of 
relationships between parts of the file through a directed graph of relationship associations. Additionally, 
the specification provides a standardized approach for digitally signing the contents or portions of the 
contents which meets the requirements proposed in the Security Considerations section below. 
 
Implementation details for xDS have not been clarified at this time, but a basic structure using OPC has 
been proposed which will: 

• Allow support for both required and optional sections 
• Support future expansion for additional sections 
• Support independent digital signing of sections 

 



2022 ODVA Industry Conference 9 ©2022 ODVA, Inc.  

The support of multiple, independent digital signatures which can be applied to selected sections in the 
package is a very powerful feature. The SIG envisions two different signatures applied to various portions 
of the xDS package. Upon completion of developing the xDS, the vendor will apply a signature to the 
critical, required sections and any other sections desired. Then, upon successfully receiving an ODVA 
Declaration of Conformity, ODVA will insert the DoC into the package and generate an ODVA signature 
based on certain critical sections which may not be modified without updating the DoC. Conversely, 
sections which are not under the ODVA signature could be modified after the fact by the vendor. 
 
The following sections have been proposed: 

1. File Version – This section will contain specific file version information including creation 
timestamp, revision number, modification history, and xDS specification version this file conforms 
to. This content is required to be included in the vendor digital signature. 

2. Devices – Multiple device descriptions may be included in a single package to represent different 
devices in a product family, as well as to represent different product revisions of each device. The 
Devices section will include a listing of all the variations included in this package. Each entry 
provides a link to the associated AML description of the device, also included in this section. This 
content is required to be included in both the vendor digital signature and the ODVA signature. 

3. Graphics – Any graphics images related to the device. A variety of allowable common image 
formats will be specified. Optional for vendor digital signature; not included in ODVA signature. 

4. Icons – Icon files used by the devices. Optional for vendor digital signature; not included in 
ODVA signature. 

5. Localization –Text in the various languages supported by the vendor, such as help strings is 
maintained here. This section is required to be signed by the vendor, but not part of the ODVA 
signature, allowing for corrections or additions to be made by the vendor without requiring 
recertification by ODVA. 

6. EDS Files – Vendors may optionally include legacy EDS files in the xDS package for use by 
systems not supporting xDS device description format. If present, required to be included in 
vendor digital signature; not included in ODVA signature. 

7. Vendor Documentation – Optional vendor supplied documentation may be packaged in this 
section, including manuals or drawings. If present, required to be included in vendor digital 
signature; not included in ODVA signature. 

8. Vendor Specific – A location for any optional vendor-specific content. Vendors may choose to 
encrypt this content. Optional for signature by vendor; not included in ODVA signature. 

9. ODVA Conformance – As part of the ODVA conformance certification process, ODVA will insert 
the Declaration of Conformity here. Not allowed for vendor signature; required for ODVA 
signature. 

10. Signatures – This section contains all of the digital signature information. This information follows 
the OPC specification for signatures and complies with the security recommendations in the 
following section. 

 
                                   
  



2022 ODVA Industry Conference 10 ©2022 ODVA, Inc.  

Security Considerations 
 
A key aspect for xDS is the concept of a secure device description artifact. A simplified threat model 
identifies two primary areas of concern for xDS information: 
 

1. Invalid xDS device descriptions – This could be accidental or malicious modifications which 
could cause a tool and/or the device to become a bad actor in the ICS. 

2. Nonconformant Device – An xDS which misrepresents a device as conformant, allowing it to be 
incorporated into the ICS, possibly as a bad actor. 

 
There are three primary use cases in which the threat model concerns must be addressed: 
 
Vendor development of the device - During device development, the xDS package will be digitally 
signed by the vendor to authenticate the source and to prevent modification. 
 

• To be a conformant product, the vendor shall digitally sign the xDS. 
• The signature shall be based on a recommended algorithm in NIST FIPS 186-4 or its successors.  
• The xDS specification shall define mandatory portions which must be protected by a signature. 
• Some portions of the xDS, as well as vendor-specific regions may be included in the signature 

but are not mandatory. 
• Keys used to sign xDS files shall be kept private through a Hardware Security Module (HSM). 
• Access to the HSM shall be documented. Any access to keys shall generate an audit trail. 

 
ODVA Conformance - Upon successful conformance test, ODVA will insert the Declaration of Conformity 
document into the xDS and add a digital signature. The signature is tied to both the declaration and the 
xDS content, providing a secure indication of device conformity. 
 

• ODVA shall insert the Declaration of Conformity into the xDS of a conformant device. 
• ODVA shall digitally sign the DOC along with other critical components of the xDS. 
• Keys used to sign xDS files shall be kept private through a Hardware Security Module (HSM). 
• Access to the HSM shall be documented. Any access to keys shall generate an audit trail. 
• ODVA shall maintain and make available a list of trust anchors (root certificate authority) used by 

vendors for signing their xDS.  
 
End User Tools - End user tools will validate an xDS upon loading. Tools will verify existence of a 
Declaration of Conformity against the ODVA signature and verify overall xDS content against the vendor 
signature. Tools must notify the user of any discrepancies. Because there will always be examples in 
which an unsigned or modified xDS must be used, an override mechanism is recommended. The user 
must be informed of the security concerns and required to acknowledge this before being allowed to use 
an unsigned or modified xDS. 
 

• All tools consuming xDS shall verify contents based on the digital signature of the vendor.  
• All tools consuming xDS shall verify presence of the ODVA DOC and verify the ODVA signature. 
• Tools may provide the ability to bypass verification. 
• If verification is bypassed, tools shall provide warning messages to the user before allowing the 

bypass. 
• Signatures shall be validated on first retrieval of a signature. Any subsequent validation should 

ignore any certificate expiration concerns. 
• Tools shall periodically retrieve trust anchor list from ODVA. 

 
  



2022 ODVA Industry Conference 11 ©2022 ODVA, Inc.  

Tools to Aid in the Adoption of xDS 
 
The SIG recognizes that a large hurdle for vendors will be the lack of established tools. The 
AutomationML Editor provides a flexible tool for the initial prototyping and validation of xDS concepts but 
is not an adequate tool for vendors to easily create a complete xDS device description. Therefore, some 
tools have been proposed and some initial prototyping of these tools has begun. 
 
The first tool is an xDS creation tool. This would be analogous to the current EZ-EDS tool. The intent is to 
make it as simple as possible for a device vendor to create a device description for their devices. Some of 
the basic capabilities of this tool include: 

• Device Description – Provide a simple hierarchical view to easily create the description. Handle 
all required AML boilerplate constructs according to the defined CIP device model.  

• Packaging – Allow specification of component files from various sources to be added. 
• Digital Signatures – Create and validate signatures. 
• Conformance – Analyze an xDS for proper required content and format. 

 
The second proposed tool is an xDS library reference implementation. This library would be an 
opensource reference to demonstrate how tools can read and interpret the information contained in an 
xDS file. 

Summary and Future Work 
 
This paper has highlighted the current state of development for xDS by the xDS SIG. This effort will lead 
to a more robust and secure device description than is currently available. This paper has described the 
use of AutomationML to model CIP devices, the use of Open Packaging Conventions to package the 
information, security considerations, and proposed tools for adoption of xDS. Going forward, the SIG will 
be continuing development of xDS toward the publication of the xDS specification. Alongside this, the SIG 
will be coordinating the development of tools to prove these concepts.  
 
  



2022 ODVA Industry Conference 12 ©2022 ODVA, Inc.  

References 
 
[1]  IEC 62424:2016, "Representation of process control engineering - Requests in P&I diagrams and 

data exchange between P&ID tools and PCE-CAE tools".  
[2]  Industrial Internet Consortium, "Digital Twin and Asset Administration Shell Concepts and Application 

in the Industrial Internet and Industrie 4.0," 2020. [Online]. Available: https://www.plattform-
i40.de/IP/Redaktion/EN/Downloads/Publikation/Digital-Twin-and-Asset-Administration-Shell-
Concepts.pdf?__blob=publicationFile&v=9. 

[3]  AutomationML Consortium, "Whitepaper AutomationML: Part 5 - Communication," 2014. [Online]. 
Available: https://www.automationml.org/wp-
content/uploads/2021/06/WP_Communication_V1.0.0.zip. 

[4]  AutomationML Consortuim, "AutomationML Editor," [Online]. Available: 
https://www.automationml.org/wp-content/uploads/2021/11/AMLEditor.5.6.7.Setup_.zip. 

[5]  ISO/IEC 29500-2:2012, "Information Technology - Document description and processing languages - 
Office Open XML File Formats - Part 2: Open Packaging Conventions". 

[6]  ECMA-376, "Office Open XML File Formats". 
 
 
 
 
 
****************************************************************************************************************************************************** 
The ideas, opinions, and recommendations expressed herein are intended to describe concepts of the author(s) for the possible use 
of ODVA technologies and do not reflect the ideas, opinions, and recommendation of ODVA per se. Because ODVA technologies 
may be applied in many diverse situations and in conjunction with products and systems from multiple vendors, the reader and 
those responsible for specifying ODVA networks must determine for themselves the suitability and the suitability of ideas, opinions, 
and recommendations expressed herein for intended use. Copyright ©2022 ODVA, Inc. All rights reserved. For permission to 
reproduce excerpts of this material, with appropriate attribution to the author(s), please contact ODVA on: TEL +1 734-975-8840 
FAX +1 734-922-0027 EMAIL odva@odva.org WEB www.odva.org.  CIP, Common Industrial Protocol, CIP Energy, CIP Motion, CIP 
Safety, CIP Sync, CIP Security, CompoNet, ControlNet, DeviceNet, and EtherNet/IP are trademarks of ODVA, Inc. All other 
trademarks are property of their respective owners. 
 

http://www.odva.org/

	Abstract
	Abbreviations
	Introduction
	Choice of AutomationML as a Device Description Modeling Language
	Modeling CIP Devices Using AutomationML
	CIP Device Model Example
	Use of Open Packaging Conventions to package xDS Components
	Security Considerations
	Tools to Aid in the Adoption of xDS
	Summary and Future Work
	References

