
Mapping CIP to OPC UA
Gregory Majcher

Principal Engineer
Rockwell Automation, Inc.

Presented at the ODVA

2022 Industry Conference and 21st Annual Meeting
March 9, 2022

San Diego, California

Abstract

The world is abuzz with talk of the next industrial revolution, Industry 4.0. Digitization, smart technologies,
machine-to-machine communications, Internet of Things deployments, the list goes on, and on. All these
innovative concepts will benefit from the standardized exchange of information between all levels of an
industrial system. New products will evolve over time, but existing technologies can be adapted now to
leverage the massive installed base of CIP™-enabled products around the world. One such technology
that is gaining acceptance is OPC UA. Many vendors, end users, and industry consortia have converged
on OPC UA as a vendor-neutral mechanism to exchange data. ODVA and OPC Foundation are jointly
developing a CIP Companion Specification to support this data exchange.

This paper documents the approach taken by that joint working group to map the CIP information model
to the OPC UA information model. With this mapping, applications utilizing OPC UA and its associated
companion specifications can obtain data from CIP devices without the need to understand CIP. This
solution will easily bring value to end users seeking to extract more data from existing installations for
their evolving application needs.

Keywords

OPC UA, Companion Specification, Gateway, Information Model, PA-DIM

Definition of terms

There are some significant terms that collide between CIP and OPC UA. In this section the overloaded
terms provide both the CIP and the OPC UA definitions so that the differences are made clear.

AddressSpace
The information that an OPC UA server exposes to clients. This information would be analogous to the
collection of Objects that a CIP device exposes. The AddressSpace of many OPC UA servers also
contains complete type information of all types used in instances.

Attribute (OPC UA)
Characteristics that are used to describe OPC UA Nodes. The set of Attributes is fixed and defined in a
core OPC UA specification. Each NodeClass has a defined subset of the Attributes that it is required to
support. Some Attributes are required by all NodeClasses (e.g., NodeId).

Attribute (CIP)
Characteristics of an Object that provide status or govern the operation of an Object. Each CIP Class
defines its own Attributes.

BrowseName
The symbolic name for a Node. It is comprised of an index that points to a namespace and a symbolic
name (text). A BrowseName may not be unique and cannot be used to uniquely identify a Node – only
the NodeId is unique.

BrowsePath
A sequence of BrowseNames constructed by starting from a known point in the AddressSpace and
following references to subsequent Nodes. It can be thought of much like a path in a file system that
leads to a file. As with a BrowseName, a BrowsePath may not be unique.

Class/Object/Instance (CIP)
A Class is a set of Objects that all represent the same kind of system component. An Object Instance is
the actual representation of a particular Object within a class. Each Instance of a Class has the same set
of Attribute and service definitions.

ObjectType/Object Instance (OPC UA)
An ObjectType provides the type definition for a physical or abstract element of a system. An Object
Instance is the actual representation of a particular Object. For example, a Pump may be an ObjectType,
and a server can have many instances of it in its address space.

DataType (OPC UA)
A DataType is used to describe the format of a value transmitted on-the-wire. It may be a simple integer
or a complex, structured value. Only Variables and VariableTypes have the DataType attribute.

Interface
Functionality that is grouped so that it can be easily added into an information model. Interfaces allow
you to build your information model using “has a” relationships. For example, the information model for a
car could reference via Interface the model for a radio. This allows the radio to be defined separately and
included where needed. The car must expose mandatory elements of the radio model and may optionally
support optional elements.

Node
The fundamental building block of OPC UA information modeling. Everything in an OPC UA information
model is a Node. Objects, Variables, Methods, etc., are all referred to as Nodes.

NodeClass
A classification for the different kinds of Nodes that defines the set of metadata (e.g., Attributes) that each
must maintain. For example, there is a NodeClass to represent Objects and a different NodeClass to
represent Variables.

NodeID
A unique identifier for a piece of information within an OPC UA server. It is comprised of a namespace,
which identifies a naming authority, and an identifier assigned by the naming authority, which is unique
within the namespace.

Reference
Defines the relationship between two Nodes. For example, an Object will use a “HasComponent”
Reference to describe the relationship it has to one of its Objects or Variables. References can point in a
forward or reverse direction. The reverse of “HasComponent” is “ComponentOf”. This allows the server to
model sophisticated relationships between Nodes, such as a doubly-linked list.

Variable/DataVariable/Property (OPC UA)
Variables are used to represent values much like Attributes in CIP. However, OPC UA makes a
distinction between DataVariables and Properties. A DataVariable can have a Property that further
describes it. For example, CIP models an analog channel as an Object with Attributes representing the

value and the engineering units. OPC UA might also model the channel as an Object, but the value
would be a DataVariable and the engineering units would be a Property of the value.

Introduction

The original OPC standard was born out of a need to “abstract PLC-specific protocols into a standard
interface”. That need still exists today. End users choose field level protocols based on application
specific needs, but there is an increasing desire to collect and use data from devices on all those
disparate fieldbuses. The users of that data may not understand the details of each field level protocol
and they wish to get data consistently across all of them. Many are choosing OPC UA to achieve that.
ODVA’s Common Industrial Cloud Infrastructure Special Interest Group (CICI SIG) was formed to enable
interactions between cloud applications and ODVA CONFORMANT™ devices that support
EtherNet/IP™. At ODVA’s 2020 Industry Conference, members of the CICI SIG presented a paper
documenting use cases for a CIP Companion Specification for OPC UA [1]. This paper will outline the
progress towards meeting some of those use cases.

What is OPC UA?

OPC UA is an open, royalty free set of standards designed as a universal communication protocol. It
makes use of standard internet technologies, like TCP/IP, HTTP, and Web Sockets. It defines sets of
core services and a basic information model framework. That framework allows vendor-specific
information to be exposed in a standard way using metadata. This enables OPC UA Clients to discover
and use that vendor-specific information without prior knowledge of it.

Information Modeling in OPC UA

The elemental modeling concept in OPC UA is the “Node”. Everything is implemented using Nodes:
objects, methods, variables, references, etc. All Nodes are described by a set of required attributes such
as the NodeId, NodeClass, and BrowseName. Different node classes have additional attributes – for
example, Variable nodes have a Value, DataType, and other attributes which describe the contents of the
data. These attributes are the metadata that allows clients to discover the information that a server has to
offer. OPC UA uses inheritance, and each new, derived type can add required and optional attributes, or
require an optional attribute from a base class be mandatory in the derived class, but cannot remove
support for inherited attributes. This technique is used by all information modeling elements used in OPC
UA.

Much like CIP, OPC UA uses Objects to represent complex information. The information modeling
framework defines a textual representation and a graphical representation that is similar to UML. Figure
1 shows a simple information model for how a drill press might be modeled in OPC UA.

MotorType:
DrillPressMotor

Manufacturer

Height

DeviceRevision
Direction

Speed

StartStop

Variable
Interfaces

IVendorNameplateType
HasInterface

BaseObjectType

DrillPressType

Figure 1 - OPC UA Model for a Drill Press

You can see from the figure that the DrillPressType inherits from the BaseObjectType. The
BaseObjectType is defined by OPC UA 10000 – 5 Information Model. OPC UA’s Part 5 is a core
specification that defines the required attributes that all Object Types must support for consistency.

The newly defined DrillPressType object has components (an object representing the motor, a method to
control operation, Speed, Direction, and Height) and properties (Manufacturer and DeviceRevision). The
object also includes an OPC UA “Interface”. Two of the optional properties from the interface
(Manufacturer and DeviceRevision) are defined as mandatory for this object so they are specifically
shown in the drawing.

The textual representation for this model is shown in Table 1. Each element of the object definition is
further defined in this table. References indicate the relationship between the object and each element.
The Node Class tells you which fundamental modeling construct (Node Type) is used. DataTypes can
either be fundamental data types defined in the core specifications, or derived types. To help readers
identify where something is defined, namespaces are included in the definition. If a number and a colon
precede an element, it means that it is defined elsewhere. Specifications are required to supply a
namespace table containing an index and a URI of any referenced type definitions. The “Other” column
documents the need in implementation. Mandatory (M) and Optional (O) are shown here, but OPC UA
defines additional classifications not demonstrated in this simple example.

Attribute Value

BrowseName DrillPressType
IsAbstract False
References Node

Class
BrowseName DataType TypeDefinition Other

Subtype of the BaseObjectType defined in OPC 10000-5
0:HasComponent Object DrillPressMotor 2:MotorType M
0:HasComponent Variable Speed 0:Int32 0:PropertyType O
0:HasComponent Variable Direction 0:Boolean 0:PropertyType M
0:HasComponent Variable Height 0:Int32 0:PropertyType M
0:HasComponent Method StartStop Defined in x.y.z M

0:HasInterface ObjectType 1:IVendorNameplateType
Applied from IVendorNameplateType (defined in OPC 10000-100)
0:HasProperty Variable 1:Manufacturer 0:LocalizedText 0:PropertyType M
0:HasProperty Variable 1:DeviceRevision 0:String 0:PropertyType M

Table 1 - Drill Press Object Type Definition

Finally, you will recognize that all the elements have a BrowseName. The BrowseName is a required
attribute of all elements in OPC UA. The BrowseName is human-readable, but its primary use is for
clients to build paths of BrowseNames. Clients gain access to a server’s address space through some
known entry point and then start navigating using BrowseNames and references between the elements.
Once the client finds the specific information it needs, it invokes a service on the server to translate a
BrowsePath into a NodeId. Once the client has the NodeId, it will use that to access the information in
the future. This whole model is very similar to the directory structure on a computer.

What is a Companion Specification
A companion specification uses OPC UA’s information modeling framework to describe common
information found in an industry vertical (e.g., Plastics and Rubber), or standard types of machines (e.g.,
Pumps and Vacuum Pumps). These specifications attempt to harmonize the representation of the
information in that vertical or machine by defining objects, variables, data types, methods and references

specific to their operation. Simply put, companion specifications define a common interface to information
represented by the model that could be supported in any instantiation of that model.

The CIP Companion Specification
CIP does not represent any one industry vertical or specific machine. It is used everywhere throughout
industry. The purpose of the CIP Companion Specification is to provide a translation that would allow
information found in CIP devices to be represented in the form needed by existing and future OPC UA
client applications regardless of what companion specifications those applications use. An example of
the translation that is needed is presented in this paper.

The translation rules defined by the CIP companion specification can be implemented in any device that
has an OPC UA server, however the most efficient and expedient way to enable this capability in existing
installations would be for it to exist in a gateway appliance, or gateway function in a product already on
the network.

Figure 2 depicts an industrial network that is accessed by an OPC UA Client Application. OPC UA clients
can discover OPC UA Servers and browse their address spaces. In this figure either the controller or the
gateway appliance could contain the gateway functionality that would gather data from devices and
translate it for the OPC UA client. This could be done for EtherNet/IP devices as well as non-CIP field
devices integrated through CIP’s Integration Volumes 7A-C. The client could see each proxied device as
an individual OPC UA server as if it were communicating directly with it.

OPC UA Client Application

Block IO

OPC UA <-> CIP Gateway

H
A
R
T

I
O

I
O

Controller with OPC
UA Server

Modular IO System

HART Sensor

IO-Link Sensor

Process Instrument

Network Switch

EtherNet/IP Network

APL

Figure 2 - Industrial Network Accessed by OPC UA Client Application

CIP Device Information Model
To build our model we considered the elements that are common to all CIP devices: an identity, a
network interface, and a collection of device-specific application objects. We created a standard
representation for the Identity Object and CIP network interfaces by defining several OPC UA object and

interface types. For all other device-specific application objects we plan to create OPC UA types that
could model any CIP object generically.

Many of the use cases outlined in [1] deal with asset management. For OPC UA this kind of information
is defined in OPC 10000-100 (Devices). While there is considerable overlap between the information in
OPC’s Devices specification and CIP’s Identity Object, we decided to model both. We wanted to
preserve all the attributes of the Identity Object in a lossless way and be able to represent a CIP device
as modeled in OPC’s Part 100: Devices.

CIP Identity Model
To model the CIP Identity information, we defined a CipIdentityType Object. The object inherits from
OPC UA’s BaseObjectType; the root for all object definitions. Each required CIP attribute is modeled as
a property of the CipIdentityType. In addition to this ObjectType, we also defined an identical
InterfaceType so that existing models could expose the CIP Identity Object attributes simply by including
the interface. Interfaces are an OPC UA modeling construct that enables you to build object functionality
by referencing the interface (i.e., composition). When referencing an interface, the source object must
include mandatory elements in the interface and can optionally include any optional elements.

CipIdentityType

Vendor ID

Device Type

Product Code

Revision

Status

Serial Number

Product Name

BaseObjectType

ICipIdentityType

Vendor ID

Device Type

Product Code

Revision

Status

Serial Number

Product Name

BaseInterfaceType

Figure 3 – Modeling the Identity Object

The optional attributes of the Identity Object were also added to OPC UA Interfaces. We grouped
optional attributes into five interfaces: common, uncommon, HART, IO Link, and ModBus. This was a
tradeoff between defining many interfaces and one very large interface that contained everything the
Identity Object defines. This grouping should allow for more sensible implementations. For example, CIP
can model the Identity of HART, IOLink, or ModBus devices. The optional interfaces needed for these
attributes can be applied only where needed to represent devices on those networks.

ModBus Identity Info
“M”

HART Extended ID Info
“M”

HART Status
“O”

IO-Link Protocol Revision ID
“M”

IO-Link FunctionID
“M”

IO-Link Serial Number
“M”

Extended IO-Link ID Info
“M”

BaseInterfaceType

ICipIdObjectModBusAttributesType

ICipIdObjectIoLinkAttributesType

ICipIdObjectHartAttributesType

Figure 4 - Optional Functionality Modeled using Interfaces

OPC UA’s Part 100: Devices specification defines information for the identification of devices. Those
properties are contained in two interfaces, IVendorNamplateType and ITagNameplateType. Figure 5
shows the CIPDeviceType inheriting from the ComponentType which is defined in Part 100. The
CIPDeviceType further mandates several optional properties from the Part 100 interfaces to align with
many existing companion specifications (e.g., PA-DIM). This collection of OPC UA properties and CIP
Identity Object Attributes represents all the identification functionality from both specifications.

CipIdentityType
HasInterface

Manufacturer

SerialNumber
DeviceRevision

ManufacturerUri

Model

DeviceClass

ProductInstanceUri

Variable

ICipIdCommonAttributesType

ICipIdObjectIoLinkAttributesType

ICipIdObjectHartAttributesType
ICipIdObjectModBusAttributesType

ICipIdUncommonAttributesType

Interfaces

Adopted from
ComponentType,
but changed to

Mandatory

Variable

Interfaces

ITagNameplateType

IVendorNameplateTypeHasInterface

BaseObjectType

TopologyElementType

ComponentType

CipDeviceType

Figure 5 - CipDeviceType Derived from Part 100 Types

Some CIP attributes have a close equivalent property in an OPC UA object, while others require
significant translation. For example, OPC UA makes extensive use of string data types in many
properties that have numeric equivalents in CIP attributes. Table 2 demonstrates examples of the
translation rules being proposed for the CIP companion specification for the identity information inherited
from Part 100.

Table 2 - Translation for Identity Information

OPC UA
ComponentType

CIP
Identity Object

Mapping

Property DataType Attribute Datatype
Manufacturer Localized

Text1
Vendor ID UINT ODVA maintains a list of manufacturer

names alongside the Vendor ID. The
numeric Vendor ID must be mapped to
the manufacturer name string by the
gateway function.

ManufacturerUri String Vendor URI STRING If the Vendor URI is not supported, a
client or gateway shall report a value of
“www.odva.org/vendor_id_NNNNN”,
where NNNNN is the value of the
Vendor ID attribute in decimal with
leading zeroes.

Model Localized
Text1

International
Product
Name

STRINGI or
SHORT_S
TRING if
Product

If the device does not support
International Product Name, the
Product Name attribute should be used,
but it will not be localized.

Name is
returned

ProductCode String Catalog
Number

SHORT_S
TRING

If Catalog Number is not supported,
return empty string.

HardwareRevision String Hardware
Revision

Struct of:
USINTs

Convert the USINTs to “Major.Minor“

SoftwareRevision String Revision Struct of:
USINTs

Convert the USINTs to “Major.Minor“

DeviceRevision String Revision Struct of:
USINTs

Convert the USINTs to “Major.Minor“

DeviceClass String Device Type UINT If the Device Type maps to a publicly
defined device profile, the Gateway will
respond with a string for that type.
Otherwise respond with “Vendor
Specific Device Type XX“, where XX is
the Device Type.

SerialNumber String Serial
Number

UDINT Convert the UDINT to a String

ProductInstanceUri String Gateway will retrieve the
ManufacturerUri and Serial Number
from the device. If ManufacturerUri is
not supported, it will retrieve the Vendor
ID and map the Vendor ID to the
ManufacturerURI. The ManufacturerUri
will be concatenated with the Serial
Number.

AssetId String Assigned_Na
me

STRINGI If the device does not support the
Assigned Name attribute, return a Null
string

ComponentName Localized
Text1

Assigned_De
scription

STRINGI If the device does not support the
Assigned Description attribute, return a
Null string

1: If a device does not support localization, OPC UA specifications indicate that a default language should
be used. It would be acceptable for devices or the gateway to always respond with English.

CIP Network Interface Model
OPC UA 10000 - 22 Base Network Model defines a very basic InterfaceType to be used by all networks.
We defined object types that referenced that InterfaceType and new InterfaceTypes that model the
information for the specific CIP network of the device. Part 22 defines a well-known location in the
server’s address space for network interfaces. Our new types will be located there so that any client can
learn about a device’s interface to its network. Figure 6 shows the model for DeviceNet and EtherNet/IP.

Variable

Interfaces

IIeeeAutoNegotiationStatusType

IIeeeBaseEthernetPortType

Variable

Interfaces

ITcpIpInterfaceType
IEthernetLinkType

Variable
Interfaces

IIetfBaseNetworkInterfaceType

Variable
Interfaces

IDeviceNetType

HasInterface

HasInterface

HasInterface

HasInterface

HasInterface

BaseObjectType BaseInterfaceType

CipEthernetNetworkType

CipDeviceNetNetworkType

Newly-defined types for the
CIP Companion Specification

Figure 6 - CIP Network Types derived from Part 22

Full CIP Device Model
Figure 7 shows the full information model for an EtherNet/IP device including the hierarchy of type
inheritance.

Variable

Interfaces

CipIdentityType
HasInterface

Manufacturer

SerialNumber
DeviceRevision

ManufacturerUri

Model

DeviceClass

ProductInstanceUri

VariableICipIdCommonAttributesType
ICipIdUncommonAttributesType

Interfaces

Adopted from
ComponentType,
and changed to

Mandatory
CipEthernetNetworkType

Variable

Interfaces

ITagNameplateType

IVendorNameplateTypeHasInterface

HasInterface

OPC UA Part 5

OPC UA Part 100

IIeeeAutoNegotiationStatusType

IIeeeBaseEthernetPortType

Variable

Interfaces

ITcpIpInterfaceType
IEthernetLinkType

Variable
Interfaces

IIetfBaseNetworkInterfaceType

OPC UA Part 22

HasInterface

TBD BNM components TBD BNM components CIP ObjectsOptional Placeholder

CIP CS

HasInterface

BaseObjectType

TopologyElementType

ComponentType

CipDeviceType

EthernetIpDeviceType

Figure 7 - CIP EtherNet/IP Device Information Model

Generic CIP Object Model
The CIP specifications define dozens of application objects and vendors are free to define more of their
own. There are several alternatives to modeling these for OPC UA. We could provide a translation for
only the most common publicly defined objects. That would provide some benefit but would neglect some
applications due to the missing translations and it does not address vendor specific objects. We could
provide a translation for all publicly defined objects. That would take a long time and still would not
address vendor-specific objects. The most comprehensive solution is to provide some type of generic
mapping of the CIP object model to OPC UA.

Fig 7 shows that the EthernetIpDeviceType has an “Optional Placeholder” for CIP Objects. OPC UA uses
the Optional Placeholder modeling rule for open-ended situations. It allows you to place any number of
objects with an unspecified BrowseName at that point in the model. We will use this to represent all other
CIP objects in a device.

The details behind the GenericCipObjectType are still being developed. Figure 8 demonstrates how this
generic type might be used. It shows a device that supports two instances of the Discrete Input Point
Object. It supports Class Attribute 1, and Instance Attributes 3 and 4. The gateway would use some
algorithm to generate unique BrowseNames for each Node in the model. In this case we used the pattern
“CIP Class X Instance Y Attribute Z”. For brevity the pattern could have been “CXIYAZ”. The important
part is that the name is unique within the path. Using this generic object, we believe we can represent
any CIP object in OPC UA.

MyCipDeviceType

CIP Class 8
Attribute 1

CIP Class 8 Instance 1
Attribute 4

GenericCipObjectType:
CIP Class 8

GenericCipObjectType:
CIP Class 8 Instance 1

GenericCipObjectType:
CIP Class 8 Instance 2

CIP Class 8 Instance 2
Attribute 3

CIP Class 8 Instance 1
Attribute 3

CIP Class 8 Instance 2
Attribute 4

HasProperty

HasProperty

HasProperty

HasProperty

HasProperty

HasComponent

HasComponent

HasComponent

Figure 8 - Generic CIP Object Information Model

Example Integration with Other Information Models
Let’s finish with an example to understand how this model might be used. The Downright Delicious
Doughnut Corporation is a multinational company with production facilities around the world. They buy
machines and control equipment locally where their production facilities exist. As such they need to
manage equipment from many different suppliers. They want to harmonize their asset management
function so that it can be performed and accessed from any location. In Figure 9 we see a model of their
operations.

The high-level processes at DDD’s locations are similar: dough is formed, cooked, drilled (likely the best
way to make the holes in donuts), dressed, and packed in continuous batches. Some equipment used at

both factories is identical, while other equipment is different. The Fried Division has standardized on
EtherNet/IP, while the Baked Division uses Inferior Netz. The two network technologies use different
information to represent the identity of products even for identical pieces of equipment. EtherNet/IP uses
the numerical attribute values defined in the Identity Object. Inferior Netz uses all string datatypes with a
heavy use of animal names to differentiate products. For both networks there are vendors that produce
OPC UA gateway products.

Mixing/
Kneading

Frying Drilling
Frosting/

Conveyance

Packaging

DDD Corp Baked Division
Jibulger, Papua New Guinea

DDD Corp Fried Division
Hackensack, New Jersey, USA

Mixing/
Kneading

Baking

Drilling

Frosting/
Conveyance

Packaging

OPC UA Application

Controls using EtherNet/IPTM

Controls using Inferior NetzTM

DDD Corporation Headquarters
Anywhere, USA

Figure 9 - Multinational Company Managing Assets from a Centralized Location

The Quality Assurance department at the Jibulger plant has recently reported uneven baking resulting in
raw and burnt donuts that are out of specification. Plant engineers researched the issue and determined
that it could be addressed with a firmware update available for the oven. Following this update, product is
produced within specifications. When headquarters learns of this issue and resolution, they order the
asset management team to find all the firmware updates available for their equipment.

The asset management team maintains a database of all equipment in DDD’s facilities using an OPC UA
application. The application was built using the Donut Industry Companion Specification (fictional, but
certainly needed). That specification defines object types to represent all the equipment used in the
donut-making process (e.g., DrillPressType) and as shown in Figure 1, those types are built referencing
interfaces defined in OPC’s Part 100.

The asset management team finds a security bulletin from the drill press vendor indicating that attackers
could change the direction of motion during operation. This attack would lead to imperfect holes of

varying sizes. The remedy is a firmware update from the vendor. This vendor uses EtherNet/IP controls
and has identified the affected products using the Vendor ID, Device Type, Product Code and Revision.
The team first searches the database for this Vendor’s products. It uses the Manufacturer property from
Part 100. As Table 2 shows, CIP products will have their numeric Vendor ID mapped to a vendor name.
Once all occurrences of this vendor are found in the database, the asset management team can filter for
the Device Type and Product Code. Both values are available because the gateway used at the
Hackensack plant uses the CIP Companion Specification to incorporate common OPC data with CIP
data. All devices are represented with the CipIdentityType which includes both the Identity Object
information as well as the Part 100: Devices model.

This example demonstrates the merging of data from core OPC UA specifications, industry companion
specifications, and the CIP object model.

Conclusion

OPC UA continues to gain momentum as a vendor-independent mechanism to collect data. The
publication of our companion specification will be essential to help our end users realize the potential of
their intelligent devices. This paper discussed progress that has been made towards an OPC UA
Companion Specification for CIP. There are still many challenges that need to be addressed like offline
and online representation of all the data a device has to offer, metadata that fully describes CIP attributes,
handling of complex data and services, and adoption of the UAFX asset model. All these issues still need
to be investigated to achieve a feature rich solution that satisfies all the use cases we envision. The
material we have today provides good coverage for many asset management functions and will provide
immediate benefit if released as a first version while we continue to develop the model to cover more
diverse use cases.

Works Cited

[1] P. Brooks, K. Hopwood, F. Latino and S. Roby, Use Cases for a CIP Companion Specification for OPC UA,
Palm Harbor: ODVA, Inc., 2020.

[2] ODVA, The CIP Networks Library, Volume 1: Common Industrial Protocol, PUB00001, Ann Arbor: ODVA, Inc.,
2001-2021.

[3] ODVA, The CIP Networks Library, Volume 2: EtherNet/IP Adaptation of CIP, PUB000002, Ann Arbor: ODVA,
Inc., 1999-2021.

[4] ODVA, The CIP Networks Library, Volume 7B: Integration of HART Devices into the CIP Architecture, Ann
Arbor: ODVA, Inc., 2018-2021.

[5] ODVA, The CIP Networks Library, Volume 7C: Integration of IO-Link Devices into the CIP Architecture, Ann
Arbor: ODVA, Inc., 2019-2021.

[6] ODVA, The CIP Networks Library, Volume 7A: Integration of Modbus Devices into the CIP Architecture, Ann
Arbor: ODVA, Inc., 2007-2021.

[7] OPC Foundation, OPC Unified Architectue Part 5: Information Model, Scottsdale: OPC Foundation, Inc., 2006-
2021.

[8] OPC Foundation, OPC Unified Architecture Part 100: Devices, Scottsdale: OPC Foundation, Inc., 2006-2021.

[9] OPC Foundation, OPC Unified Architecture Part 22: Base Network Model, Scottsdale: OPC Foundation, Inc.,
2021.

**
The ideas, opinions, and recommendations expressed herein are intended to describe concepts of the author(s) for the possible use
of ODVA technologies and do not reflect the ideas, opinions, and recommendation of ODVA per se. Because ODVA technologies
may be applied in many diverse situations and in conjunction with products and systems from multiple vendors, the reader and
those responsible for specifying ODVA networks must determine for themselves the suitability and the suitability of ideas, opinions,
and recommendations expressed herein for intended use. Copyright ©2018 ODVA, Inc. All rights reserved. For permission to

reproduce excerpts of this material, with appropriate attribution to the author(s), please contact ODVA on: TEL +1 734-975-8840
FAX +1 734-922-0027 EMAIL odva@odva.org WEB www.odva.org. CIP, Common Industrial Protocol, CIP Energy, CIP Motion, CIP
Safety, CIP Sync, CIP Security, CompoNet, ControlNet, DeviceNet, and EtherNet/IP are trademarks of ODVA, Inc. All other
trademarks are property of their respective owners.

http://www.odva.org/

	Abstract
	Keywords
	Definition of terms
	Introduction
	What is OPC UA?
	Information Modeling in OPC UA
	What is a Companion Specification

	The CIP Companion Specification
	CIP Device Information Model
	CIP Identity Model
	CIP Network Interface Model
	Full CIP Device Model
	Generic CIP Object Model

	Example Integration with Other Information Models
	Conclusion
	Works Cited

