

Enhancements to EtherNet/IP for Constrained Devices and Networks

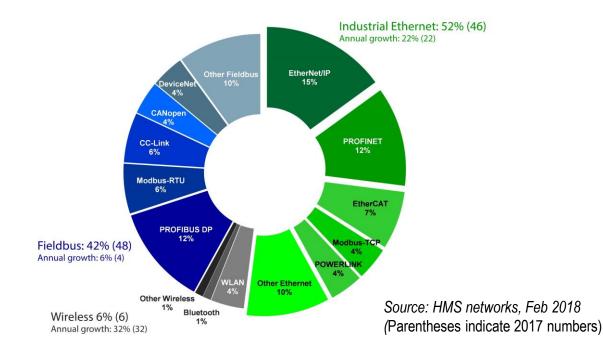
David D. Brandt: Rockwell Automation, Inc. Dayin Xu: Rockwell Automation, Inc. Dr. Jörg Hähniche: Endress+Hauser Process Solutions AG Matthias Dietrich: Endress+Hauser Process Solutions AG

October 10, 2018

Purpose of Paper

This paper presents a set of proposed enhancements, many adopted from or inspired by IETF and IEEE, making it possible to use EtherNet/IP on constrained devices and networks, thus enabling the single-network vision - where all devices in an industrial plant can communicate with the same set of protocols.

ODVA Community Interest


- ODVA Conference Papers have expressed interest in support for better addressing constrained devices
- 2014 2017
- Various applications:
 - Process Automation
 - In-Cabinet components
- Wired and wireless
- Considering usage of emerging technology
- See [1-6]

Industrial Network Convergence

Industrial Ethernet has exhibited rapid growth, with EtherNet/IP emerging as a leader.

Fieldbuses (and sensor networks) still retain a large position and many potential network nodes remain hardwired.



2018 Industry Conference & 19th Annual Meeting All rights reserved. www.odva.org

End users understand and seek the advantages of a harmonized network - based on Ethernet, IP, and the related open ecosystem.

Organizations promoting Ethernet and IP to the edge (See backup slide)

The Single Network Vision

- Single network advantages include:
 - Higher performance for a similar cost
 - Elimination of costly applicationspecific gateways
 - Leverage of a large existing ecosystem (protocols, security, network switches, etc.)
 - Reduced installation, maintenance, and management complexity
 - Simplified integration with cloud applications
 - Reduced interoperability issues

Barriers to the "Single Network Vision"

- Cost adder
- Component footprint
- Power consumption
- System wiring complexity
- Cable distance
- Network power solution
- Intrinsic Safety compatibility
- Low power wireless solution
- Protocol complexity

The mix of Industrial Ethernet, fieldbuses, and hardwired nodes persists due to application <u>constraints</u> near the network edge.

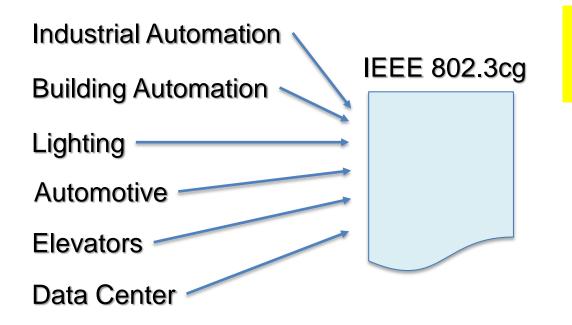
IETF: Constrained-Node Networks

- Constrained Node characteristics:
 - Low cost
 - Small size
 - Limited memory [Flash, RAM], and processing resources
 - Limited power and energy [battery size or scavenging]
 - Limited upper layer services
 - Low weight

- Constrained Network characteristics:
 - Low bitrate or throughput
 - High packet loss
 - Variability delivery rate
 - Asymmetric traffic
 - Small packet size
 - Limited availability [device sleeps]
 - Limited upper layer services

"Terminology for Constrained-Node Networks" in https://tools.ietf.org/html/rfc7228

IETF: 6TiSCH Standards


- Enhancements for Constrained Nodes and Networks
- Applicable to both low power wireless and wired networks
- Features:
 - Eliminates TCP overhead (UDP-only)
 - Compresses messages
 - Expands the address space (IPv6)
 - Optimizes security (OSCORE)
 - Shrinks the Web server (CoAP)

IETF suite of IP standards solving IoT needs (similar to Fieldbus needs)

Technical Track © 2018 ODVA, Inc.

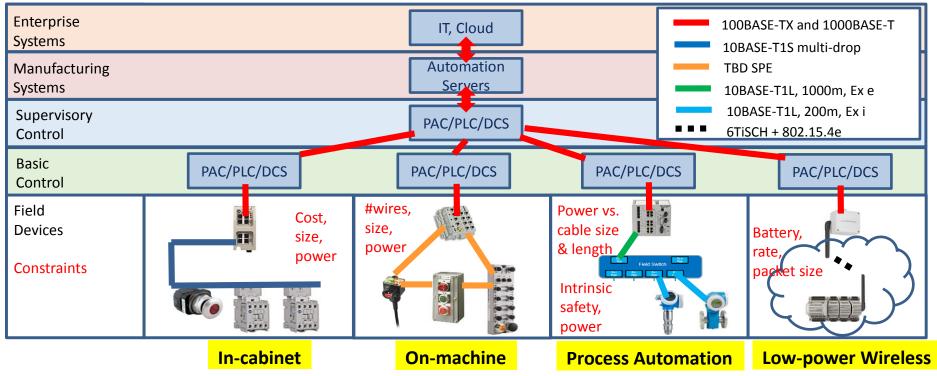
IEEE Single Pair Ethernet(s)

Numerous industries sought Ethernet enhancements to displace edge networks.

- Communication and optional power over a single pair
- Reduction in wiring, node cost, size, and power consumption

Technical Track © 2018 ODVA, Inc. 2018 Industry Conference & 19th Annual Meeting All rights reserved. www.odva.org

IEEE: Emerging SPE

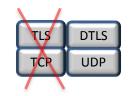

- IEEE P802.3cg 10 Mbit/s SPE (Estimated 2019)
 - 10BASE-T1L
 - Targeted at process automation instruments
 - 1000 m, intrinsic safety compatible, legacy wiring
 - 10BASE-T1S
 - Targeted at replacing:
 - CAN, CAN FD, MOST and FlexRay in automotive
 - Hardwiring for in-cabinet components for industrial automation
 - I2C and SPI in data centers
 - 25 m multidrop option
 - Determinism by PHY-level Collision Avoidance (PLCA)

Addresses low cost control

Constrained EtherNet/IP application areas

Technical Track © 2018 ODVA, Inc. 2018 Industry Conference & 19th Annual Meeting All rights reserved. www.odva.org

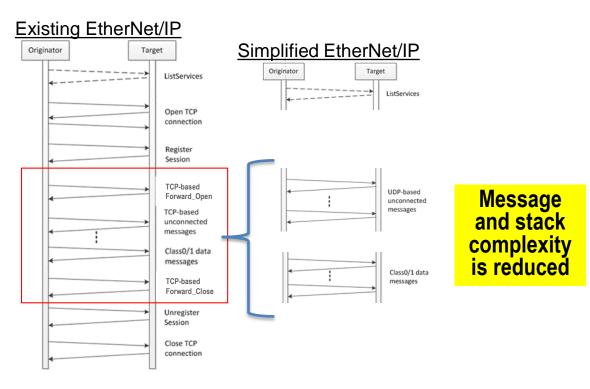
UDP-only option



UDP-only option

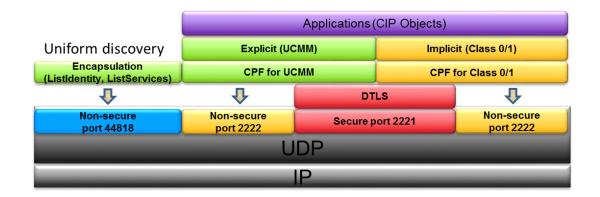
- Problem:
 - EtherNet/IP requires <u>both</u> TCP and UDP
 - TCP presents substantial overhead for constrained MCU limited Flash and RAM
 - "Chatty" TCP messaging reduces battery life in low power wireless devices
- Related Problem:
 - CIP Security requires <u>both</u> TLS and DTLS

- Solution:
 - Add <u>optional</u> support for UDP-only and DTLS-only.



- Benefits:
 - Use smallest MCUs
 - UDP-only prototype shows 30% savings in Flash and RAM
 - Draw enhancements from other sources
 - Emerging IoT stacks like IETF CoAP rely on UDP exclusively

Simplified UDP-based Messaging


- ListServices identifies capability
 - UDP-only or TCP+UDP or Both
- No TCP connections
- No encapsulation sessions
- No bindings between TCP connections and EtherNet/IP sessions

Proposal

- Support both secure and <u>standard</u> UDP-only
- Extend for full set of services
- Develop a unified capability discovery method

Technical Track © 2018 ODVA, Inc.

Existing

Volume 8

Secure

UDP-only

2018 Industry Conference & 19th Annual Meeting All rights reserved. www.odva.org

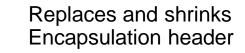
Encapsulation and CPF Header Compression option

Encapsulation and CPF header compression option

- Problem:
 - EtherNet/IP Encapsulation and CPF headers message overhead is significant for low power wireless networks
 - E.g., IETF 6TiSCH = 127B max.
 - Wireless constrains packet size to increase battery life
 - Large messages either cannot be sent or must be fragmented into multiple packets
 - Reduces battery life and increases latency

- Solution:
 - Compress EtherNet/IP encapsulation and CPF headers by well known (IETF 6TiSCH) techniques
 - Lossless "eliding" of header fields and options that rarely change
 - Added bits indicate the optional presence of byte or word fields (> 8:1 compression)
- Benefits:
 - Increase battery life and reduce latency for low power wireless

Prototype Examples


			ListIdentity	ListService	General UCMM	Class0/1		•	CPF for Cla
ion and Comman d (HCC)	Word Value		0xB763	0xBF04	0xB76F				CPF for UC
	15	Header Comp. Flag	1	1	1			•	
	14	Reserved	0	0	0				
	13	Options	1	1	1			•	CPFs used
	12,11	Sender Context	2	3	2				
	10	Status	1	1	1				
	9	Session Handle	1	1	1				
	8	Length	1	1	1				
	Bit7-0	Command	0x63	0x04	0x6F				
		Word Value			0x8052	0x8092			
	15	CPF Comp. Flag			1	1			
	14	Message Type			0	0			
	13,12	Reserved			0	0			
	11,10	T->O Socketaddr			0	0	ר	Multiple Items	
	9,8	O->T Socketaddr			0	0	Multip		Existing
	7,6	Data Item			1	2			Volume 8
	5,4,3	Address Item			2	2	Items		volume a
	2,1,0	Item Count			2	2			Secure
Defenses			24	24	40	10	1		UDP-only
Before compression (byte) After compression (byte)			24			-			
Arter com	JIESSION	ιυγιει	4	2	8	10			

Proposal

Evaluate Optional Compressions

- **Encapsulation header**
- ass 0/1

 - d within CIP services

Could be reduced further

2018 Industry Conference & 19th Annual Meeting All rights reserved.

Constrained EtherNet/IP Physical Layers

Constrained EtherNet/IP Physical Layers

- Problem:
 - EtherNet/IP does not support appropriate physical layers for several constrained application areas:
 - 1. Process Automation wired instruments for APL
 - 2. Process Automation companion wireless instruments
 - 3. In-cabinet components

- Solution:
 - Reference and extend 3 new PHYs:
 - 1. IEEE P802.3cg 10BASE-T1L PHY
 - 2. IEEE Std 802.15.4-2015 PHY
 - 3. IEEE P802.3cg 10BASE-T1S PHY

- Benefits:
 - Support important constrained EtherNet/IP application areas

Constrained EtherNet/IP Communication Profile

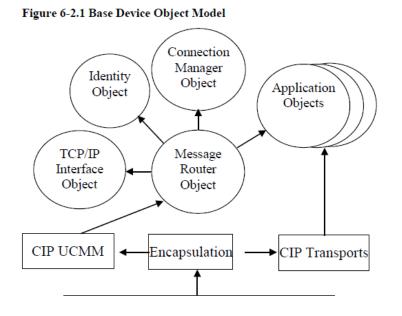
Constrained EtherNet/IP Communication Profile

- Problem:
 - EtherNet/IP does not support constrained device and network requirements
- Solution:
 - Develop a constrained EtherNet/IP communication profile

Communication Profile

Required:

- UDP-only
- Minimum objects
- UCMM and Class 1 only
- Simplified Connection
 Manager object


Optional:

- DTLS-only security
- Encapsulation header compression
- IPv6 mapping

Minimum device object model

- Same base objects for constrained EtherNet/IP, but minimize <u>implementation</u> of base objects
- Optional compression of Encapsulation and CPF headers
- Minimized CIP transports over UDP
 UCMM + Class 1 only

Object minimization example - Connection Manager

Original Definition in EtherNet/IP Specification	Simplified Implementation for Constrained Devices				
Object level simplifications					
20 optional attributes	Zero attributes				
4 common services	Zero common services				
8 object specific services	2 object specific services (Forward_Open and Forward_Close)				
Service level simplifications					
Class 0 and 1 I/O connection	Class 1 I/O connection				
Unicast and multicast	Unicast				
Class 2 and 3 explicit connection	No explicit connection, UCMM only				
CIP Routing	No CIP Routing				
Listen-only or redundant owner	No redundancy				

Technical Track © 2018 ODVA, Inc.

Constrained EtherNet/IP Capability CPF Item

- New "Constrained EtherNet/IP Capability" CPF item
 - Discover constrained device's EtherNet/IP capability using ListIdentity
- New EDS entry [Constrained EtherNet/IP Capability]
 - Describe constrained device's EtherNet/IP Capability

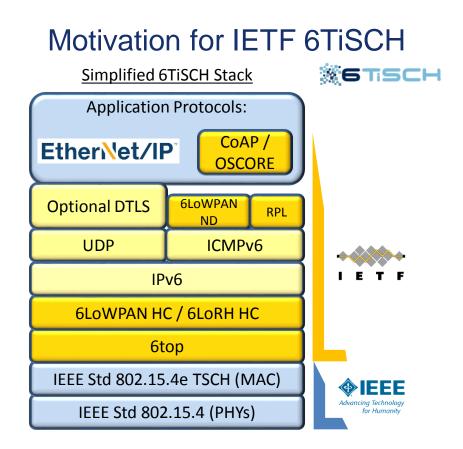
Field					
Type ID	Constrained EtherNet/IP Capability				
Length					
Link Type	0 = Ethernet 1 = 802.15.4e				
TCP/IP Type	TBD (future compression or feature reduction capabilities)				
Encapsulation & CPF Compression	WORD1: ENCAP Header Compression Profile WORD2: CPF Compression Profile				
CIP Transport Type	Bit 0 = UCMM Bit 1 = Class 1				
CIP Application Type	Bit 0 = Active Report Manager				

Constrained EtherNet/IP over 6TiSCH Network

9-2 Data Link Layers

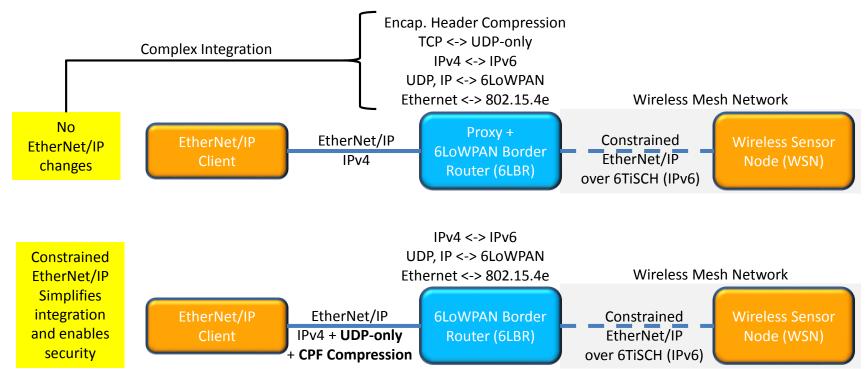
Though this specification is called "EtherNet/IP", Ethernet is technically not required. The EtherNet/IP protocol may be used on any media that supports the transmission of the Internet Protocol.

Constrained EtherNet/IP over 6TiSCH Network


- Problem:
 - EtherNet/IP does not have a low power wireless option
- Proposed Solution:
 - Specify necessary enhancements for EtherNet/IP over 6TiSCH:
 - Leverage proposed constrained EtherNet/IP enhancements
 - Add 802.15.4 MAC and PHY
 - Add 6TiSCH router and network
 management objects
 - IPv4/6 mapping to integrate 6TiSCH devices into IPv4

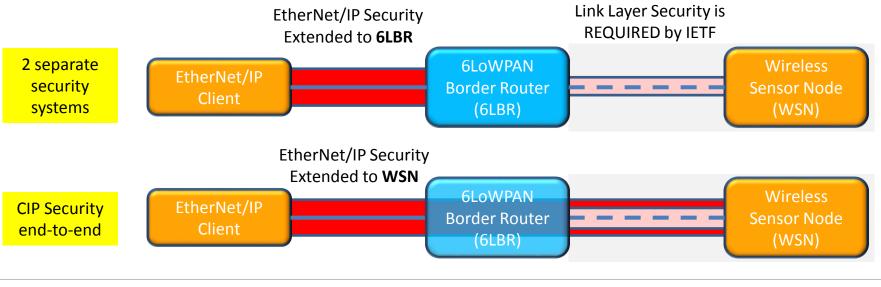
- Benefits:
 - Complements wired Process Automation (under APL)

A full IPv6 solution would be beneficial, but is not proposed


- Open (not industry specific) wireless standard
- IP-based communication
- Self-organizing mesh network
 - Robust, reliable, less engineering
- The market leader:
 - "By 2023, there will be 4.5 billion 802.15.4 mesh devices sold worldwide."
 - <u>https://onworld.com/research/zigbee/vip/</u>

Technical Track © 2018 ODVA, Inc.

Prototype: Important Enhancements for Integration of Constrained EtherNet/IP over 6TiSCH



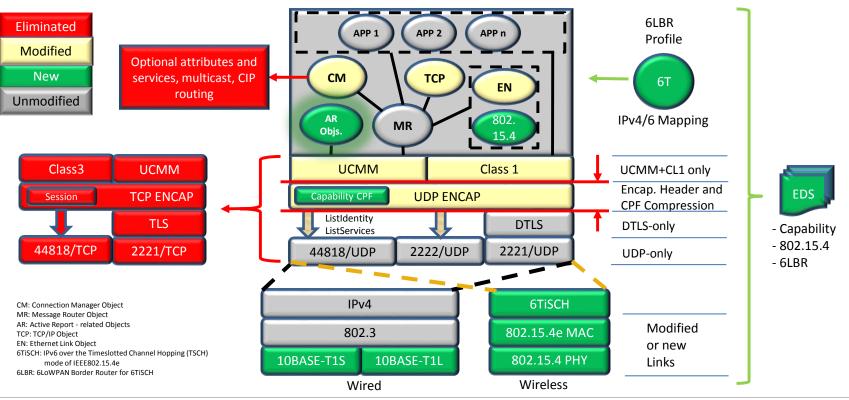
Technical Track © 2018 ODVA, Inc. 2018 Industry Conference & 19th Annual Meeting All rights reserved. www.odva.org

Security for Constrained EtherNet/IP over 6TiSCH

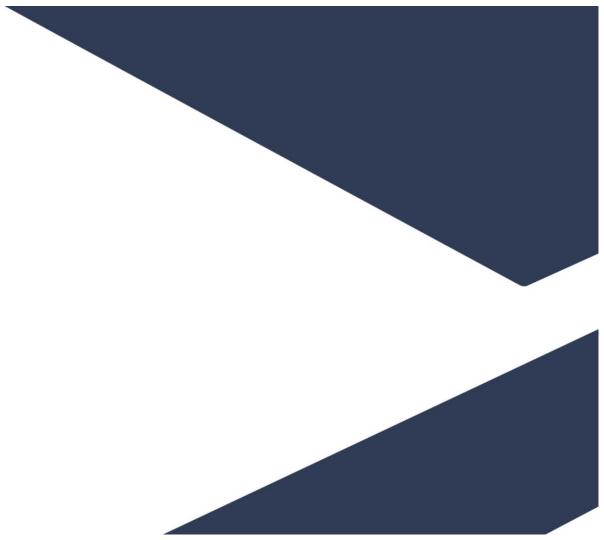
- CIP end-to-end security is <u>precluded</u> by any 6LBR processing of the application layer (Encapsulation Layer compression)
- 6TiSCH requires IETF OSCORE security for network join, DTLS has some increase in overhead

New objects for 6TiSCH Network

- 804.15.4 link object
 - In both 6LBR and WSNs
 - Similar to Ethernet: Interface Speed, Flags, Counters, State, Label, Capabilities, Physical Address...
 - New: RF characteristics
- 6TiSCH wireless network management object
 - In 6LBR
 - Network status information
 - Network topology information
 - Network routing information
 - Device join and leave



Stack Summary


Constrained EtherNet/IP Stack

Technical Track © 2018 ODVA, Inc. 2018 Industry Conference & 19th Annual Meeting All rights reserved. www.odva.org

THANK YOU

References

- IEEE 802.3cg (10SPE) 10 Mb/s Single Pair Ethernet Meeting Industrial Automation Objectives : 2017-ODVA-Conference_Brandt Xu Haehniche_IEEE-802-3cg-10SPE_R0_FINAL
- 2. DeviceNet of Things Use Cases, Value Proposition and Status of Specification: 2017-ODVA-Conference_Caspers_DOT_FINAL
- 3. Resource-constrained Industrial Things Proposal for the Adaptation of CoAP to EtherNet/IP: 2017-ODVA-Conference_Green Otterdahl_CoAP_FINAL
- 4. EtherNet/IP to the Edge A Concept for "Low-complexity Ethernet" : 2017-ODVA-Conference_Alsup_Weingartner_Low-complexity_Ethernet_FINAL
- 5. Extending EtherNet/IP[™] to Resource-Constrained Industrial Things: 2015_ODVA_Conference_Xu-Brooks_Extending-EtherNetIP-to-Resource-Constrained-Industrial-Things-FINAL
- 6. CIP over 6LoWPAN: Expand CIP to IPv6-based Field Wireless Network: 2014_ODVA_Conference_Xu_Brooks_Yu_Brandt_CIP_over_6LoWPAN_FINAL

Outside efforts related to expanding Ethernet and IP to edge devices

- OPEN Alliance: One Pair EtherNet Alliance, Automotive industry organization focused on the all-Ethernet car
- Digital Ceiling: LED lighting connected and powered by Ethernet with PoE, augmented by sensors and wireless communication
- IEEE: Standard for Single Pair Ethernet for Automotive, Industrial, Lighting, Building, Elevator, Data Center, etc., reducing cost/size/weight
- IETF: Standards for IP protocol enhancements for constrained devices
- APL: Advanced Physical Layer, Process Automation effort to bring Ethernet to instruments and other field devices