

Agenda

Deterministic Ethernet in Industrial

What is TSN?

An Industrial Use Case

TSN in Control Applications

Effect of TSN features on Control Applications

Network Convergence and Centralized Configuration

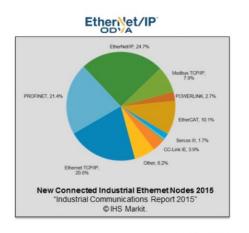
Conclusions

For over a decade, Industrial Automation has used:

- Cut through switching
- Time synchronization
- Traffic shaping techniques
- Scheduling algorithms
- Dynamic frame packing
- Frame fragmentation
- The results are excellent!
- But, no single standard exists

Deterministic Ethernet in Industrial

Ascent of EtherNet/IP


What are industry analysts saying?

"Transition to industrial Ethernet is accelerating and EtherNet/IP accounted for approximately 25% of all new Ethernet nodes shipped in 2015. The growth trend for EtherNet/IP is expected to continue building on its strong installed base, the transition from fieldbus to Ethernet networks, and the fact that industrial Ethernet will provide a fundamental component of connectivity necessary to enable smart manufacturing and IIOT solutions."

Mr. Alex West, analyst for IHS Markit

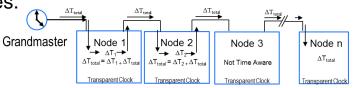
ODVA - The Future of Industrial Automation Media Briefing 2016Q4 Page 17 www.odva.org

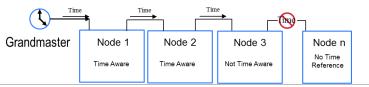
Opportunity

- In general, these protocols are proprietary at layer 2
 - Specific to 10/100 Mbit (Fast Ethernet)
 - EtherNet/IP is an exception
- The lloT represents a huge inflection point in the market
 - Demands for network convergence and more data will force these standards bodies to adopt Gigabit Ethernet
 - These proprietary solutions do not scale easily to Gigabit
 - The emerging Time-Sensitive Networking (TSN) standards provide a migration path
- ODVA is in an excellent position to leverage this transition into a competitive advantage

What is TSN?

- ► A set of 802.1 sub-standards, addressing different needs
- Not all sub-standard have to be implemented
- ► The important sub-standards for Industrial Automation are:
 - 802.1AS (REV) Time Synchronization
 - 802.1Qbv Time Aware Traffic Shaper
 - 802.1Qbu/802.3br Preemption
 - 802.1CB Seamless Redundancy
 - 802.1Qci Ingress Policing
 - 802.1Qcc Network Management

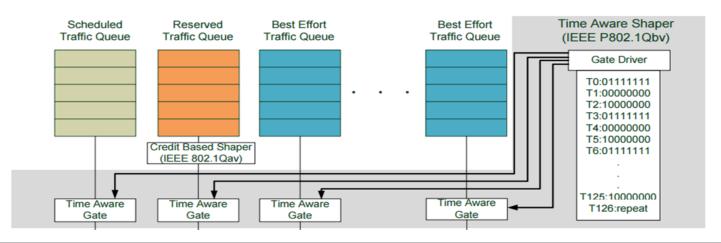



802.1AS (REV) Time Synchronization

- In the context of TSN:
 - Time sync refers to IEEE 802.1AS and .1AS-REV:
 - uses a master-slave protocol for time synchronization
 - does not use "transparent clocks" to compensate for bridge latency
 - Peer-to-Peer mechanism requires every node be time-aware
 - Not practical for brownfield
- Good news! Other TSN features are independent of time-sync profile

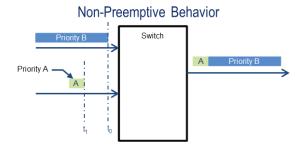
Need to manage various time profiles.

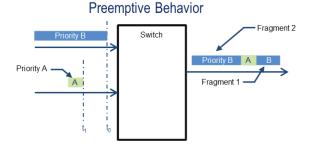
End-to-End Transparent Clock System



Peer-to-Peer
Transparent Clock or
-1AS Clock System

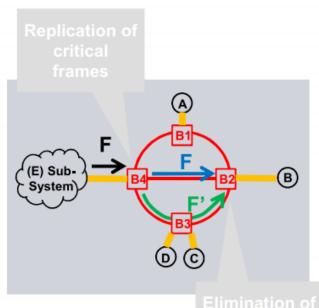
802.1Qbv Time Traffic Aware Shaper


- IEEE802.1Qbv introduces time-aware "transmission gates".
- These gates are used to enable separate transmission queues.
- The Qbv shaper provides a time-based circular schedule which opens and closes the transmission gate at specific times



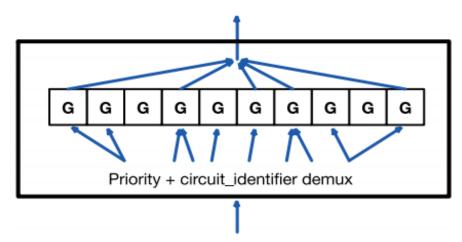
802.1Qbu/802.3br Preemption

- Preemption (also called Interspersing Express Traffic):
 - Allows the switch to stop a transmission in midstream to allow a higher priority packet to transmit.
 - Note that only one level of traffic is defined as preemptive



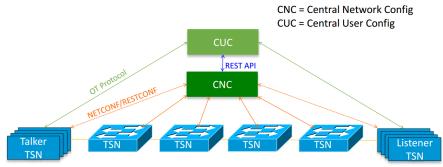
802.1CB Seamless Redundancy

- Purpose: Provide lightweight redundancy for reliable delivery of traffic streams
- How? Frame replication and elimination
- Send two copies of a message along maximally disjoint path to ensure delivery
- Use of redundant paths minimize packet loss due to
 - Link or device failures
 - Congestion
- Discard duplicate frames upon reception

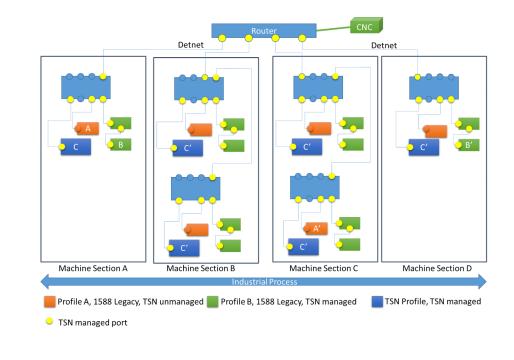


Elimination of redundant frames

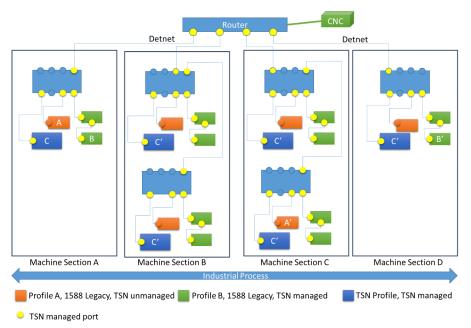
802.1Qci Ingress Policing


- Purpose: Prevent traffic overload conditions (DDoS, erroneous delivery) from affecting the receiving node
- How? Filtering traffic on a per stream basis by providing an input gate for each stream
- Input gate serves to enforce a "contract" between the talker and listener
- Contract functions could be:
 - Pass/no-pass
 - "Leaky bucket" policing
 - Time/bandwidth-based
 - Threshold counter
 - Burst sizes
 - Packet sizes
 - Misuse of labels, etc.

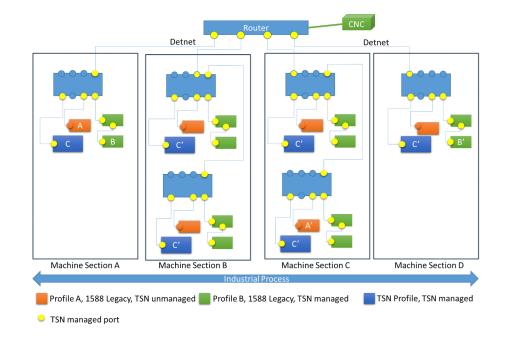
802.1Qcc - Centralized Configuration


- Adds a User Network Interface (UNI) which allows for a centralized network configuration (CNC) entity.
 - CNC performs network calculus, scheduling and other configuration tasks
 - uses a remote management protocol such as NETCONF or RESTCONF.
 - A Centralized User Configuration (CUC) communicates to the CNC via a standard API.
 - The CUC may be used to discover end stations, retrieve end station capabilities and user requirements, and configure TSN features in end stations.

Industrial Use Case

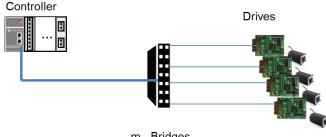

- A single machine consisting of four different sections of machinery
 - Section delivered via different OEMs
 - Each section is a subnet with a unique VLAN
- 15 machines per site
 - Common IP addressing scheme
- 7 manufacturing sites worldwide.
- All sections synchronized and coordinated to produce final product
 - Relevant events timestamped
 - Data on the manufacturing floor can be correlated against data in the MES system and data from the supply chain.

Industrial Use Case 18th Annual Meeting

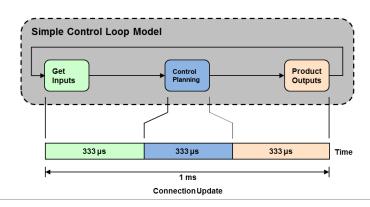

- The entire manufacturing facility uses the same understanding of absolute time and the common notion of "wall clock time."
- But, different 1588 profiles may be present:
 - Component A may communicate with A'
 - Component B may communicate with B'
 - Component C produces data consumed by C' components in sections B, C, and D
- Time gateway/translation is required for components A and A', and B and B'.

Time Gateways

- Time bridging, or time gateway, must be provided in the layer 2 switches
- Provides the mechanism for migrating legacy technologies into a TSN system.
- This functionality has <u>NOT</u> been identified as a required work item for any standards communities. Individual suppliers could develop these bridge functions as solutions for the market.


Challenges

- This use case illustrates the need for solutions at layer 2 (switching), layer 3 (routing) and for time bridging functions
 - Typical for a very wide range of industrial applications
- How does centralized management deal with such a use case?
 - Machine segments are configured and certified by manufacturer
 - Multiple CNC/CUCs involved
 - How are the configuration and traffic specification of these segments integrated at the manufacturing site?
- A plant-wide understanding of time becomes problematic
 - Integration of different time profiles will be necessary (brownfield)
 - IEEE802.1AS could become the defacto standard for infrastructure devices.



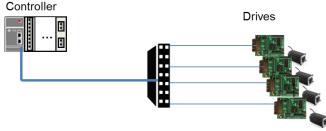
- Input data must arrive at Controller before the end of the input interval
- Planned data outputs should be transmitted before the end of the planner interval
- Output data must arrive at the drive before the end of the output interval
- Of course, this all assumes the drives and controller have a common understanding of time.

A Simple Control Model

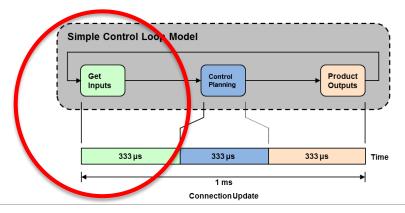
m - Bridges

You will never strike oil by drilling through the map! BUT: this does not, in any way, diminish the value of a map! (Solomon Golomb: Mathematical models – Uses and limitations. Aeronautical Journal 1968)

Source: Dr Edward Lee (UC Berkley) TSNA'15 – The Internet of Important Things


What's shown is a simple model intended to illustrate the effects of TSN on an Ethernet-based control solution

There are many potential points of optimization in a complex, realworld system. Assumptions made herein are for the purpose of discussion, not to suggest design approaches or solutions.



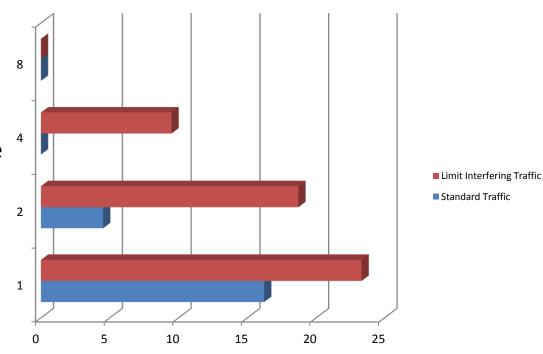
A Simple Motion Control Model

- We'll focus on a part of the problem associated with network performance
- Ideally, we'd like all of the drives to transmit their output data simultaneously
- In this way the link between the controller and bridge is optimally utilized

m - Bridges

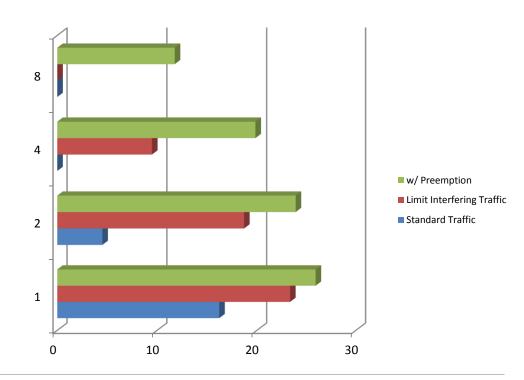
A Simple Motion Control Model

- A simple model for control on a "best-effort" network
 - Assumes all network elements are time-aware
 - Assumes standard QoS/priority throughout.
 - Assume cut-through switch (cut-through latency ~2usec @ 100 Mbs; ~1usec @ 1 Gbs)
 - Important for upcoming line topology discussion
 - Assumes some control of traffic volume and the size of interfering traffic on the network


A Simple Motion Control Model

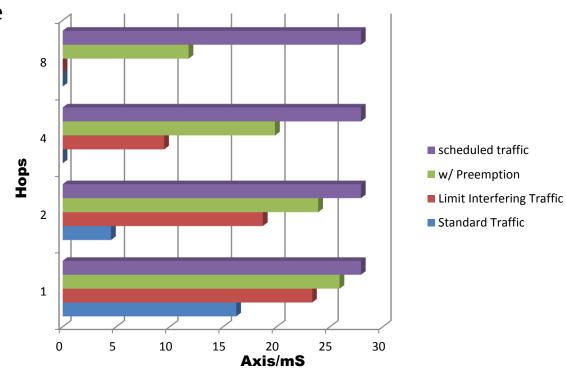
- Max Axis = 1 + {1/3 * Connection Update Period (Drive Transmission Delay + (m + 1)
 * Ethernet Transmission Time + m * Switch Latency + NIC Packet Processing Delay + Bus Interface Delay)}/NIC Packet Processing Delay
 - (Where m = # of hops)
 - Drive Transmission Delay: We'll assume all drives have outputs queued prior to transmission, so this is contribution is small with respect to other operands, effectively 0 usec
 - Assume update packets are fairly small(124 bytes), so Ethernet Transmission Time is (124+20)*80ns/byte = 11.52 usec (at 100 Mbs)
 - Switch Latency = (interfering packet size+20)*80ns/byte
 - NIC Packet Processing Delay There are techniques to ensure the network is the bottleneck (e.g. 2 cycle processing): 11.5 usec for 100 Mbs, 1.15 for Gigabit..
 - Bus Interface Delay: has a lot to do with the overall system architecture. could go effectively to 0 (given good bus structure, DMA/ etc.). We'll assume 0 for this analysis.

100 Mbs Baseline


- Performance strongly influenced by interfering traffic and thus, the number of hops
- In practice, control systems will engineer the network to limit the size of interfering packets (this example assumes 500 bytes)

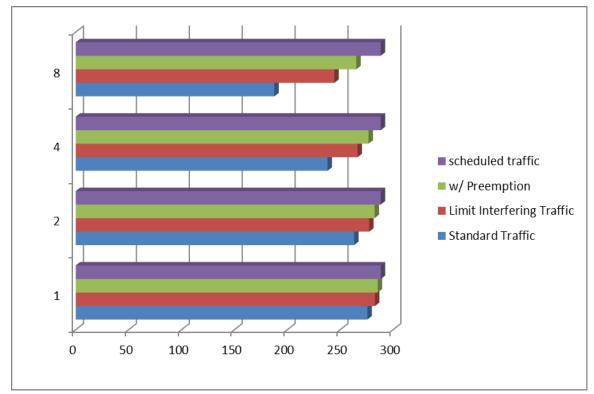
100 Mbs w/ Preemption

- Preemption offers a standard, unified means to limit the effects of interfering traffic
- With a maximum fragment size of 64, the maximum interfering frame size is:
 - (2*64 bytes)-1 =127 bytes
- Simplifies the problem of isolating the control network from interfering traffic
- Still need to ensure that other traffic of the same priority is not present on the wire or that bandwidth is sufficient to deal with all such traffic

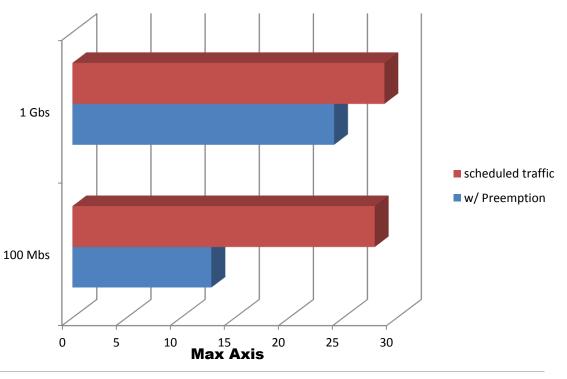


- Utilization of a line topology and scheduled traffic can further minimize effect of interfering traffic
- Schedule of drives can be individually adjusted to compensate for drive transmission delay, transmission time and switch latency.

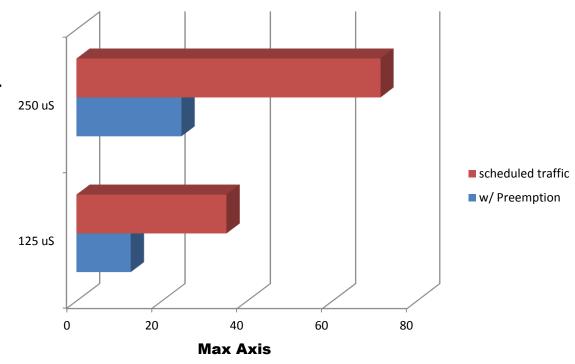
100 Mbs w/ Scheduled Traffic

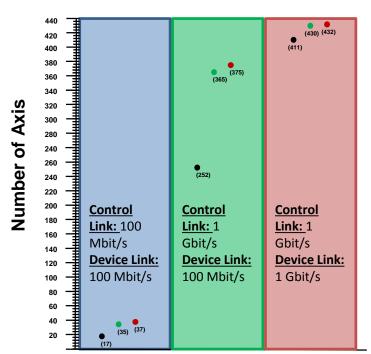

- Effects due to switch latency are minimized
- The effects of interfering traffic are of less consideration than the ability of the controller to process incoming packets
- This still assumes a somewhat isolated network (i.e. there is not other traffic of the same class which might interfere with control packets)

1 Gbs Results


- Gigabit transmission speeds further reduce the effects of interfering traffic
- Note that the benefit from scheduled traffic across hops is much less significant

1 Gbs Preemption vs Scheduled Traffic


- Properly engineered, line topology limits the effects of interfering traffic to a single hop (i.e. control traffic is transmitted in a burst)
- With preemption, the effects of interfering traffic are minimal with respect to a 1 mS update cycle


1 Gbs Preemption vs Scheduled Traffic

- However, as the update frequency is increased, network effects again become significant.
- Note: this example assumes the network, rather than controller packet processing, is the bottleneck in the system.

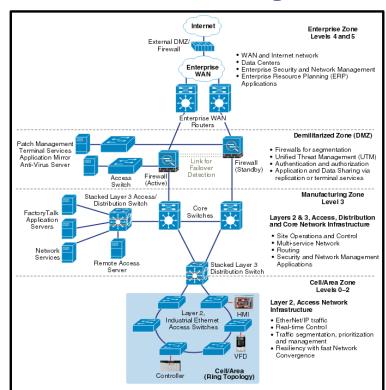
Wire Speed vs. TSN Functionality: Distributed Linear Segment Topology

Common Configuration

- i7 Processor
- · 2-cycle timing
- 1 millisecond motion planner
- 1500 byte non-motion packet
- 1 Switch
- Up to 50 nodes per linear segment

Legend:

- No TSN functions enabled
- ◆ Preemption enabled
- Scheduling enabled


Conclusions:

- Wire speed contributes to the majority of throughput and performance on the wire.
 - Number or axes
 - Jitter
- TSN functions allow for better "packing" of data at any given wire speed
- There is little difference in performance benefit between preemption and scheduling
 - However, both can be used together.

Network Convergence and Centralized Configuration

- Given these results, do we need scheduled traffic?
- As deployment of Ethernet in Industrial Automation grows more data is desired. Solutions must scale.
- As the Enterprise and Automation networks become more integrated, data flows from various applications must converge.
- IEEE802.1Qcc provides a practical approach for achieving this vision



Summary

- TSN technologies offer a scalable, predictable approach to deterministic networking.
- Because Ethernet/IP products have always relied upon standardized technologies, ODVA is in an excellent position to leverage these emerging standards.
- However, significant challenges remain.
- The integration of various PTP profile and the convergence of EtherNet/IP traffic with a scheduled TSN network are chief among these challenges.

THANK YOU

