

IT and OT Convergence - Recommendations for Building an Industrial IoT-Ready Manufacturing Network

Arun Siddeswaran, Cisco Systems, Inc.
Gregory Wilcox, Rockwell Automation, Inc.

February 22, 2017

Agenda

- Secure Connectivity between Manufacturing and Business Systems
 - Business Outcomes
 - Bridging OT-IT
 - Key Requirements / Key Tenets
- Key Takeaways
- Recommended Resources

Industrial IoT - Business Outcomes

Industrial IoT - Business Outcomes

Source: SCM World/Cisco "Smart Manufacturing and the Internet of Things 2015" survey of 418 Manufacturing Business Line Executives and Plant Managers across 17 vertical industries.

Industrial IoT - Business Outcomes

- Smart Devices, Smart Machines, Smart Manufacturing
- Customer choice of best-in-class products through Industrial IoT device coexistence and interoperability
- Standard Network Services; Standard Network Tools
- Pervasive Asset Optimization and Utilization
 - Common infrastructure devices and tools
 - Human assets: knowledge, experience, training
- Better Analytics
 - Device/Machine, System/Plant, Enterprise
- Enables Innovative Technologies
 - Mobility Personnel and Equipment
 - Cloud –On Premise and Off Premise

Industrial OT vs Enterprise IT Networks

Industrial OT vs. Enterprise IT Networks

Criteria	Industrial OT Network	Enterprise IT Network
Network Technology	Standard IEEE 802.3 Ethernet and proprietary (non- standard) versions Standard IETF Internet Protocol (IPv4) and proprietary (non-standard) alternatives	Standard IEEE 802.3 Ethernet Standard IETF Internet Protocol (IPv4 and IPv6)
Network Availability	Switch-Level and Device-Level Topologies Ring Topology is predominant for both, Redundant Star for switch topologies is emerging Standard IEEE, IEC and vendor specific Layer 2 resiliency protocols	Switch-Level topologies Redundant Star Topology is predominant Standard IEEE, IETF, and vendor specific Layer 2 and Layer 3 resiliency protocols
Service Level Agreement (SLA)	Mean time to recovery (MTTR) - Minutes, Hours	Mean time to recovery (MTTR) - Hours, Days
IP Addressing	Mostly Static	Mostly Dynamic

Industrial OT vs. Enterprise IT Networks

Criteria	Industrial OT Network	Enterprise IT Network
Traffic Type	Primarily local – traffic between local assets Information, control, safety, motion, time synchronization, energy management Smaller frames for control traffic Industrial application layer protocols: CIP, PROFINET, IEC 61850, Modbus TCP, etc.	Primarily non-local – traffic to remote assets Voice, Video, Data Larger packets and frames Standard application layer protocols: HTTP, SNMP, DNS, RTP, SSH, etc.
Performance	Low Latency, Low Jitter Data Prioritization – QoS – Layer 2 & 3	Low Latency, Low Jitter Data Prioritization – QoS – Layer 3
Security	Open by default, must close by configuration and architecture Industrial security standards – e.g. IEC, NIST Inconsistent deployment of security policies No line-of-sight to the Enterprise or to the Internet	Pervasive Enterprise security standards Strong security policies Line-of-sight across the Enterprise and to the Internet

What are best practices

Structured and Hardened Architectures

Key Requirements

- Scalable
- Reliable
- Safe
- Secure
- Future-ready

Key Tenets

- Smart Endpoints
- Segmentation (Zoning)
- Managed Infrastructure
- Resiliency
- Time-critical Data
- Wireless Mobility
- Holistic Defense-in-Depth Security
- Convergence-ready

Zoning Through Segmentation

Plant-wide Zoning

- Functional / Security Areas
- Smaller Connected LANs.
 - Smaller Broadcast Domains
 - Smaller Fault Domains
 - Smaller Domains of Trust
- Industrial IoT Technology
- Building Block Approach for Scalability

Zoning Through Segmentation

Zoning Through Segmentation

Key Tenets

- Smart Endpoints
- Segmentation (Zoning)
- Managed Infrastructure
- Resiliency
- Time-critical Data
- Wireless Mobility
- Holistic Defensein-Depth Security
- Convergenceready

Wired Access Overview

Typical Zone Traffic Flows

CIP Implicit Traffic- Producers & Consumer

>80% local

Cyclical I/O traffic, UDP unicast and multicast

<500 Bytes, Frequent 0.5 to 10's of ms, typically 20 ms

CIP Explicit Traffic - Informational control and administration

Intra- and inter-cell/area zone traffic flow

Non-critical administrative or data traffic using TCP

~1500 Bytes, infrequent

Industrial Network Topologies

Switch-level Topologies

Device-level Topologies

Performance Requirements

dustry Conference						
18th Ánnual Meeting Function	Process Automation Information Integration, Slower Process Automation	Discrete Automation Time-critical Discrete Automation	Loss Critical Multi-axis Motion Control			
Comm. Technology	.Net, DCOM, TCP/IP	Industrial Protocols, CIP, Profinet	Hardware and Software solutions, e.g. CIP Motion, PTP			
Period	1 second or longer	1 ms to 100 ms	100 μs to 10 ms			
Industries	Oil & Gas, chemicals, energy, water	Auto, food and beverage, electrical assembly, semiconductor, metals, pharmaceutical	Utilities Subset of Discrete automation			
Applications	Pumps, compressors, mixers; monitoring of temperature, pressure, flow	Material handling, filling, labeling, palletizing, packaging; welding, stamping, cutting, metal forming, soldering, sorting	Life/equipment safety, Synchronization o multiple axes: printing presses, wire drawing, web making, picking and placing			

Source: ARC Advisory Group

Network Resiliency Protocols

dustry Conference							•		
dustry Conference 18th Annual Meeting Resiliency Protocol	Mixed Vendor	Ring	Redundant Star	Net Conv >250 ms	Net Conv 50-100 ms	Net Conv < 0~10 ms	Layer 3	Layer 2	
STP (802.1D)			0						
RSTP (802.1w)	0				Process and Information				
MSTP (802.1s)	0								
PVST+									
REP						Time (Critical		
EtherChannel (LACP 802.3ad)	•				•			•	
MRP (IEC 62439-2)*									
Flex Links									
PRP/HSR (IEC 62439)*		•				•			
DLR (IEC & ODVA)	•	•				•	Los	ss Critical	
StackWise			0						
HSRP									
VRRP (IETF RFC 3768)	•	•	•	•			0		

Challenge - Ethernet Growing Pains

- Ethernet networks continue to grow:
 - Each skid/machine adds another 5 50 EtherNet/IP enabled devices
 - Every line adds another 250 1,000 EtherNet/IP enabled devices

How do I connect all these skids/machines into a plant network to gain the advantages?

Layer 2 Network Address Translation (NAT)

Outside Subnet (ex. 10.0.0.x)

One to One (1:1) NAT

Many Outside IP addresses (One per device wishing to be accessible from the Outside Subnet

NAT Enabled Device

Many Inside IP addresses (One per connected device)

Inside Subnet (ex. 192.168.1.x)

Layer 2 NAT Design Scenario #1

Single-Cell, Single VLAN per Switch

Wireless Access Overview

Wireless Technology Overview - Benefits of Industrial WLAN

- Lower installation and operational costs
 - Cabling and hardware reduction
 - Minimizing cable failures
- Connection to hard-to-reach and restricted areas
- Equipment mobility
 - New and more efficient applications
- Workforce mobility
 - Higher productivity and less downtime
 - Operators, engineering and maintenance, Industrial IT
- Asset Tracking
 - Track assets of people to optimize cost and for safety

Challenges of wireless communication

- Half-duplex shared medium:
 - Only one radio can transmit on a particular wireless channel
 - A radio cannot transmit and receive at the same time on the same channel
- Higher latency, jitter and packet loss compared to wired Ethernet
 - Media contention, collisions and interference
 - Can be minimized but not eliminated
- Signal quality may change over time

Wireless advantages > challenges when

- WLAN is designed and maintained properly
- Used for appropriate applications

Autonomous WLAN Architecture

Unified WLAN Architecture

Holistic Defense-in-Depth Security

Industrial Network Security Framework

Control System Engineers (OT)

Control System Engineers in Collaboration with IT Network Engineers (Industrial IT)

IT Security Architects in Collaboration with Control Systems Engineers

Secure Remote Connectivity

Key Takeaways

- Plant-wide reference architectures Simplified design, quicker deployment, reduced risk in deploying new technology
- Wired access topology and protocols based on plant layout, convergence and application requirements
- Layer 2 NAT helps end users to easily integrate skids/machines into their larger plant network without extensive coordination with OEMs
- Wireless access offers multiple advantages, enables secure personnel access, equipment to equipment communication and asset tracking
- Defense-in-depth security offers multiple layers of threat detection and prevention

ODVA

- The Common Industrial Protocol (CIP) and the Family of CIP Networks
- Network Infrastructure for <u>EtherNet/IP: Introduction and Considerations</u>
- Media Planning and Installation
 Manual
- Guidelines for Using Device Level
 Ring (DLR) with EtherNet/IP
- Securing EtherNet/IP Networks

Recommended Resources

- Converged Plantwide Ethernet (CPwE) Architectures
 - Cisco
 - Rockwell Automation
- Education / Awareness
 - Industrial IP Advantage (IIPA) eLearning <u>industrial-ip.org</u>
- Training / Certification
 - Industrial Networking Specialist
 - IMINS Training, 200-401 Exam
 - CCNA Industrial
 - IMINS2 Training, 200-601 Exam

Thank You

