

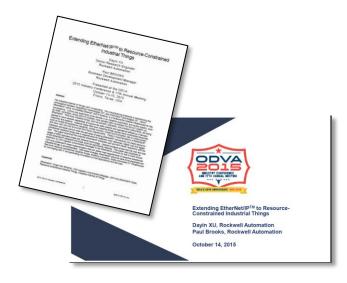
Resource-constrained Industrial Things – Proposal for the Adaptation of CoAP to EtherNet/IP™

Jonas Green, Björn Otterdahl HMS Industrial Networks AB

February 22, 2017

Why EtherNet/IP over CoAP?

- Connect all devices in a factory to EtherNet/IP
 - Even small and simple sensors and actuators
 - No need for routers
 - Enable more diagnostic data from the devices
- Make EtherNet/IP cheaper and more simple to implement
 - Remove TCP and the Encapsulation protocol and replace with CoAP
 - Less computing power and less memory required by the sensor system
- Make the devices IoT Ready in a secure way
 - Leverage on home automation to enable cloud connectivity for every sensor
 - Use the security features used by the home automation business

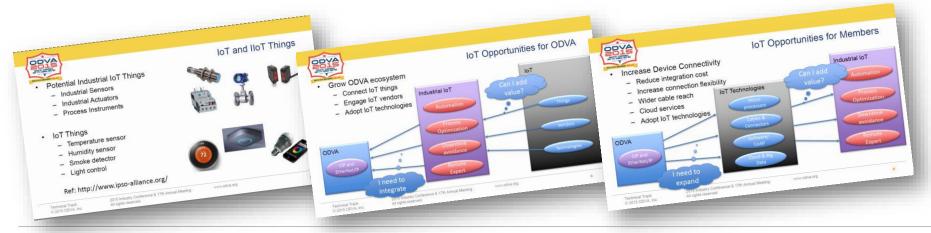


Introduction

• Continuation on the work on Resource constrained EtherNet/IP device

• Presented 2015 by Paul Brooks and Dayin Xu

• Quick recap:


- Widen the ODVA ecosystem with IIoT solutions
- Cost and size reduction needed
- EtherNet/IP over UDP reduces size/cost
- Single Pair Ethernet reduces size/cost
- CIP transport barrier relies on TCP

Technical Track © 2017 ODVA, Inc. 2017 Industry Conference & 18th Annual Meeting All rights reserved.

Why do we need a resource constrained design?

- Introduce sensors and small actuators to the ODVA ecosystem via Ethernet connectivity
- Enable data and diagnostics to achieve smart operations from every thing on the factory floor
- Cheaper and smaller solution is necessary

Technical Track © 2017 ODVA, Inc. 2017 Industry Conference & 18th Annual Meeting All rights reserved.

Introduction

- Bachelor thesis in collaboration with Halmstad University 2016
 - Evaluated different IoT protocols to solve reliability for UDP based EtherNet/IP communication. (CoAP, AMQP, MQTT and DDS were compared)
 - CoAP is request/response oriented
 - Demo implementation

Technical Track © 2017 ODVA, Inc. 2017 Industry Conference & 18th Annual Meeting All rights reserved.

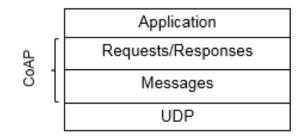
Constrained Application Protocol

CoAP

- Modern IoT protocol targeting IoT applications
- Use cases
 - OMA Lightweight M2M Device management protocol
 - Supported by ARM mbed Device Server
 - Application-layer option to Thread

∩est

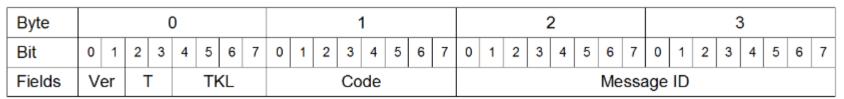
IN 20 MIN


ฯ ๚ R E A D

Technical Track © 2017 ODVA, Inc. 2017 Industry Conference & 18th Annual Meeting All rights reserved.

Constrained Application Protocol

- Machine-2-machine protocol
- Targeting constrained devices
- Low overhead and complexity
 - Built upon UDP
 - 4-byte header
- Lightweight reliability
 - Re-transmissions
 - Duplicate message detection
- Can be secured by DTLS



7

CoAP header

- Version
- Message type
 - Confirmable, Non-confirmable, Acknowledgement, Reset
- Token length
- Message code
 - Request, Success response, Client error or Server error response
- Message ID
 - Re-transmissions and duplicate message detection

Technical Track © 2017 ODVA, Inc.

- Options
 - Present in both requests and responses
 - Type-Length-Value format
 - Multiple instances in single message
 - 15 options specified

coap://device.domain.com:1234/my/path?abc=123

- Payload
 - Remaing part of the datagram size
 - Format determined by the Content-Format option

CoAP options & payload

Uri Option	Description
Content-Format	Indicates the representation format of the message payload
Uri-Host	Specifies the Internet host
Uri-Port	Specifies the transport- layer port
Uri-Path	Each instance specifies one segment of the absolute path to the resource to access
Uri-Query	Each instance specifies one argument parameterizing the resource

•

CIP adaptation on CoAP

Replace the Encapsulation layer

EtherNet/IP

CIP

Encapsulation protocol

TCP/UDP

Internet Protocol (v4)

Ethernet

EtherNet/IP over CoAP

CIP
CoAP
UDP
Internet Protocol (v4/v6)
Ethernet, 6LoWPAN etc.

Technical Track © 2017 ODVA, Inc.

CIP adaptation on CoAP – Messaging

- Address resources with URIs
 - Objects, instances, attributes
- Translate CIP services to CoAP methods
 - Subset of all services
 - Enough to control a device?
 - CoAP option for CIP services

coap://cipdevice.domain.com/245/1/6

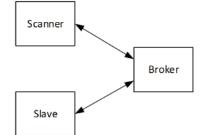
CoAP method	CIP service
GET	Get_Attribute_All / Get_Attribute_Single
POST	Create
PUT	Set_Attribute_All / Set_Attribute_Single
DELETE	Delete

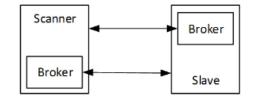
- How to handle status codes?
 - Translate CIP status codes to CoAP response codes
 - Add CoAP options for general and additional status codes

Technical Track © 2017 ODVA, Inc.

CIP adaptation on CoAP – IO data

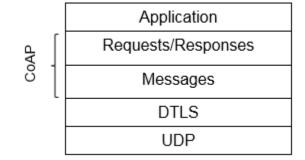
- CoAP is by design a messaging protocol
 - CoAP does not offer cyclic data exchange
 - Shall a resource contrained device handle cyclic data exchange?
- Let clients register for data updates
 - Observe resources
 - Publish/subscribe to topics linked to resources


CIP adaptation on CoAP – IO data


- Observing Resources in the Constrained Application Protocol
 - Extension to the CoAP specification (RFC7641)
- Using the CoAP GET request but adds a Observe option
- Clients register to observe a resource
 - In GET request the Observe option tells the server to register an observer
 - Register and deregister is supported
- Servers send notifications when resources are updated
 - Subsequent responses to previous request
 - Sequence number for reordering detection

CIP adaptation on CoAP - IO data

- CoAP publish/subscribe
 - Register topics
 - Publish data on topics
 - Subscribe to topics to get data updates (change-of-state)
- Separate broker device
- "Brokerless" setup
 - Pre-configured topics in the devices



Technical Track © 2017 ODVA, Inc.

CIP adaptation on CoAP – Security

- CoAP has built in support for DTLS
 - URI: coaps://
 - Port 5684
- For key-exchange CoAP has support for
 - Pre-shared keys
 - X.509 certificates
 - Raw public key
- Uses AES128 for encryption
- Adds an extra burden on the host system
 - Cipher suites must be carefully chosen, Standardized on Elliptic-Curve DH (secp256r1)
 - Hardware acceleration
 - Use raw public keys instead of X.509 certificates (RFC7250)

Example of network traffic

• Get_Attr_Single TCP/IP Interface object, instance 1, attribute 6 (host name)

No.	Time	Delta	Source	Destination	Protocol	Length	Info					
Г	3 2.664916	1.91512	8 10.11.20.181	10.11.20.185	CoAP	62	2 CON,	MID:40664,	GET,	TKN:01	02 03 04,	/cip/245/1/6
-	4 2.667306	0.00239	0 10.11.20.185	10.11.20.181	CoAP	69	9 ACK,	MID:40664,	2.05	Content	t, TKN:01	02 03 04

Example of network traffic

• Get_Attr_Single TCP/IP Interface object, instance 1, attribute 6 (host name)

No.	Time	Delta	Source	Destination	Protocol	Length	Info
Г	3 2.664916	1.915128	10.11.20.181	10.11.20.185	CoAP	62	CON, MID:40664, GET, TKN:01 02 03 04, /cip/245/1/6
	4 2.667306	0.002390	10.11.20.185	10.11.20.181	CoAP	69	ACK, MID:40664, 2.05 Content, TKN:01 02 03 04

Frame 3: 62 bytes on wire (496 bits), 62 bytes captured (496 bits) on interface 0

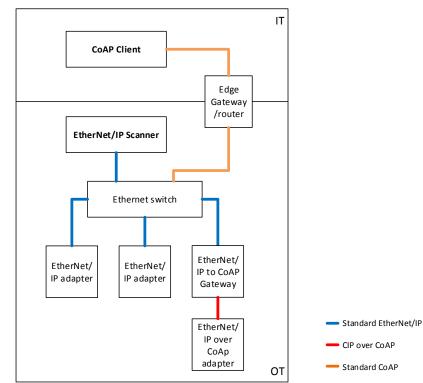
Ethernet II, Src: GoodWayI_14:ac:3b (00:50:b6:14:ac:3b), Dst: HmsIndus_0f:8c:12 (00:30:11:0f:8c:12)

Internet Protocol Version 4, Src: 10.11.20.181, Dst: 10.11.20.185

> User Datagram Protocol, Src Port: 52690, Dst Port: 5683

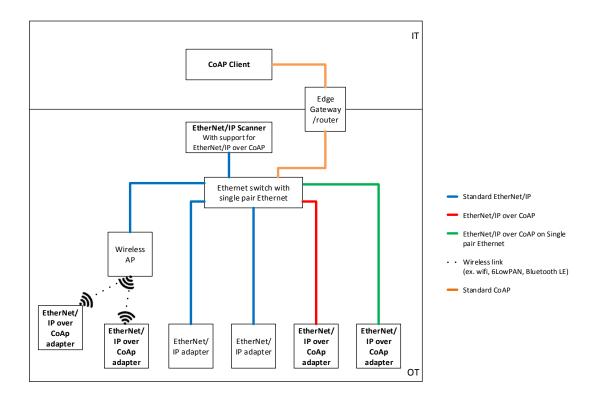
```
Constrained Application Protocol, Confirmable, GET, MID:40664
```

```
01.. .... = Version: 1
..00 .... = Type: Confirmable (0)
.... 0100 = Token Length: 4
Code: GET (1)
Message ID: 40664
Token: 01020304
> Opt Name: #1: Uri-Path: cip
> Opt Name: #2: Uri-Path: 245
> Opt Name: #3: Uri-Path: 1
> Opt Name: #4: Uri-Path: 6
[Response In: 4]
```



Example of network traffic

• Get_Attr_Single TCP/IP Interface object, instance 1, attribute 6 (host name)

	Time	Delta	Source	Destination	Protocol	Length Info					
	3 2.664916	1.915128	10.11.20.181	10.11.20.185	CoAP	62 CON,	MID:40664,	GET,	TKN:01 02	2 03 04,	/cip/245/1/
	4 2.667306	0.002390	10.11.20.185	10.11.20.181	CoAP	69 ACK,	MID:40664,	2.05	Content,	TKN:01	02 03 04
Fr	ame 4: 69 bytes o	n wire (552 bits),	69 bytes capture	d (552 bits) on interfac	e 0						
Et	hernet II, Src: H	msIndus_0f:8c:12 (00:30:11:0f:8c:12), Dst: GoodWayI_14:ac:3	b (00:50:b6:14	4:ac:3b)					
In	ternet Protocol V	ersion 4, Src: 10.	11.20.185, Dst: 1	0.11.20.181							
Us	er Datagram Proto	col, Src Port: 568	3, Dst Port: 5269	9							
Co	nstrained Applica	tion Protocol, Ack	nowledgement, 2.0	5 Content, MID:40664							
	01 = Vers	ion: 1									
	10 = Type	: Acknowledgement	(2)								
	0100 = Toke	n Length: 4									
	Code: 2.05 Conte	nt (69)									
	Message ID: 4066	4									
	Token: 01020304										
\triangleright	Opt Name: #1: Co	ntent-Format: appl	ication/octet-stre	eam							
\triangleright	[Expert Info (Wa	rning/Malformed):	Invalid Option Num	nber 65000]							
\triangleright	Opt Name: #2: Un	known Option: 00									
	End of options m	arker: 255									
	[Request In: 3]										
	[Response Time:	0.002390000 second	s]								
4	Payload: Payload	Content-Format: a	pplication/octet-s	stream, Length: 12							
	Payload Desc:	application/octet	-stream								


How to connect to the network

Technical Track © 2017 ODVA, Inc. 2017 Industry Conference & 18th Annual Meeting All rights reserved.

How to connect to the network

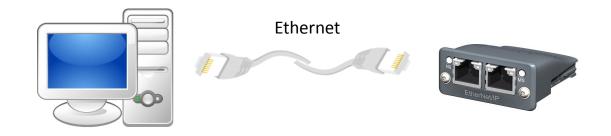
Technical Track © 2017 ODVA, Inc. 2017 Industry Conference & 18th Annual Meeting All rights reserved.

Not a finished concept

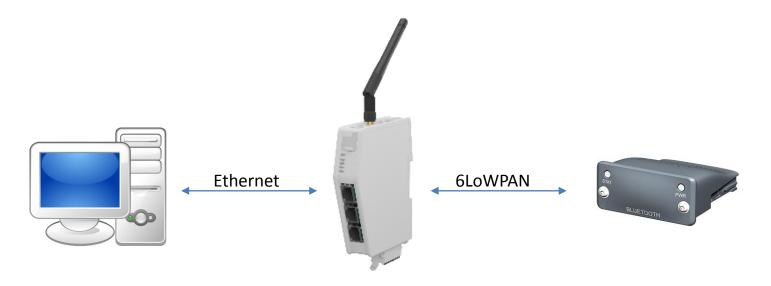
- CoAP works very well with explicit messaging of CIP
 - Examine how to support all CIP services and CIP Status codes
- No support for exchange cyclic data
 - Examine proposed techniques to replace cyclic data connections
 - How to map these techniques to the Connection Manager and Connection object?
- Investigate how to handle device commissioning
 - Discovery of new devices

- Low resource protocols for IoT devices exists
- Take advantage of already developed IoT protocols
 - Use as is or use ideas of it when adapting EtherNet/IP
- Possible to use CoAP
 - Support for explicit messaging
 - Cyclic data exchange needs a new approach
- Security of CoAP is well investigated and conforms well with CIP Security
- More to investigate for a final solution

Technical Track © 2017 ODVA, Inc.

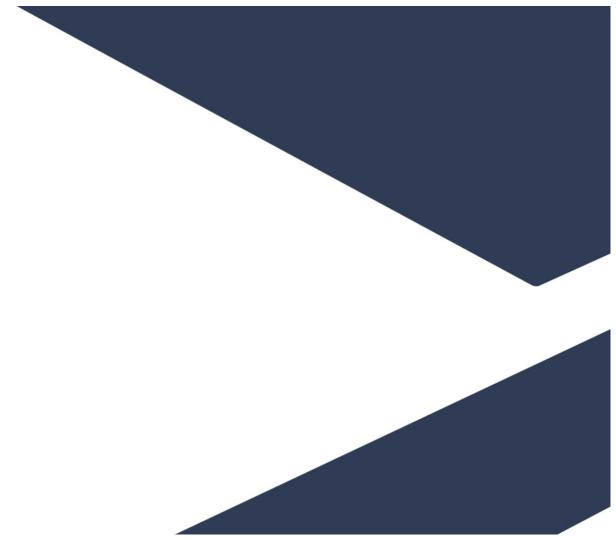


Demo of EtherNet/IP CoAP network adapter


- HMS Anybus CompactCom 40 EtherNet/IP[™] adapter
- Open source CoAP stack "libcoap"
- PC with CoAP browser used as originator

 Next step: New work in collaboration with Halmstad University, moving technology to a wireless mesh network (6LoWPAN)

2017 Industry Conference & 18th Annual Meeting All rights reserved.


Questions and discussion

Technical Track © 2017 ODVA, Inc. 2017 Industry Conference & 18th Annual Meeting All rights reserved.

THANK YOU

