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Abstract 
 
CIP Security (Profile 1) adds transport layer security to the CIP protocol, and has a large, system-wide 
impact on CIP based products. As such, there are many considerations that product developers must 
take into account when designing CIP Security enabled products. Many of these issues can have 
potential security implications and as a result require careful thought. Although the ODVA CIP Security 
specification provides sufficient information for the implementation of this protocol, it is still beneficial to 
product developers to have some additional guidance at their disposal. The aim of this paper is to provide 
non-normative guidance around many of the important considerations that have an impact on CIP 
Security implementations. This paper does not seek to replace or replicate the information within the CIP 
Security specification, but rather provides additional guidance and information. Furthermore, as this paper 
is non-normative, the information described within is not necessary for compliance (unless it is also stated 
within the official CIP Security specification). 
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Definition of Terms  
 
Acronym/Term Description 

  

AES: 
Advanced Encryption Standard 

Symmetric Encryption Algorithm designed to be efficient with 
both hardware and software. Supports 128 bit data blocks and 
key sizes of 128/192/256 bits. 
 

BSD:  
Berkeley Source Distribution 

Derivative works from original source are not required to be 
distributed under the original terms, nor is the owner required to 
make source code freely available. 
 

Certificate Authority A trusted entity that issues electronic documents that verifies a 
digital entity's identity on the internet. 
 

Cipher Suite Examples supported in CIP Security Specification: RSA, ECC, 
PSK, NULL. 
 

CoCo: 
Connection Configuration Object 

CIP defined object that may be used to configure a device to 
receive both secure and non-secure communication. 
 

CVE:  
Common Vulnerability and Exposure 

Publically available list of security threats with unique identifiers 
(CVE names, numbers and ID's). Database maintained by 
Mitre corporation and the National Cybersecurity FFRDC. 
 

(D)TLS:  
Datagram Transport Layer Security 

Based on the TLS protocol, (D)TLS provides communication 
security over UDP. Reference IETF RFC 6347. 
 

Digital Certificate A digital certificate is an electronic "passport" that allows a 
person, computer or organization to exchange information 
securely over the Internet using the public key infrastructure 
(PKI). 
 

Digital Certificate, Self-Signed Certificate signed by the same entity whose identity it certifies. 
(i.e. signed with its own private key.)  Used when parties know 
each other and trust to protect key. Hardware based key 
storage not required. 

Digital Certificate, Vendor A self-signed certificate that adds product level public keys and 
secure key storage. 
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Digital Signature The digital equivalent of handwritten signature or stamped seal 
to validate identity. It is a mathematical technique to validate 
the authenticity and integrity of a message or digital content. It 
also ensures the authenticity of the source such that service 
cannot be denied (see non-repudiation.) Digital signatures are 
based on public key infrastructure (see PKI.) 
   

ECC: 
Elliptic Curve Cryptography 

public key cryptography based on algebraic structure of elliptic 
curves. 
 

Encryption, Asymmetric Form of encryption using paired keys.  One key is known to 
everyone, the public key and the other is kept secret, known as 
the private key.  One key encrypts a message and the opposite 
key decrypts the message. RSA, ECC, Diffie Hellman 

Encryption, Symmetric Form of encryption using single key to both encrypt and decrypt 
data. Examples: AES, SHA 

Entropy Source true random number generator, often hardware generated for 
cryptography purposes. NIST SP 800-90 

GCC: 
GNU compiler collection 
 

 

GPL:  
General Public License 

Software whose source code is available at no cost for anyone 
to use for any purpose. 
 

Hash Function Any function that maps data of arbitrary size to fixed length 
data.  A cryptographic hash function is designed to be one way 
such that it is infeasible to derive the original number.  Keys in 
public key encryption are based on hash number. 

HMAC: 
Hash-Function Message 
Authentication Code 

Authentication code based on two inputs: the message and the 
key.  The output is a code that cannot be used by attackers to 
derive the source.  HMAC is an integral piece of TLS security 
architecture. 
 

Message Authentication Confirmation that the message came from the stated sender 
(its authenticity) and has not been changed in transit (its 
integrity). In CIP Security message authentication is achieved 
via TLS and the HMAC function. 
 

MAC: 
Message Authentication Code 

A message authentication code (MAC) is a short piece of 
information (e.g. code corresponding to a specific product serial 
number) used to authenticate a message. 
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Message Confidentiality Assurance that the messages between two entities cannot be 
monitored by untrusted entities.  Message confidentiality is 
achieved in CIP Security via the TLS Algorithm. 
 

Message Integrity Assurance that the message passed between two trusted 
entities has not been corrupted or altered. Message integrity is 
achieved in CIP Security via the TLS Algorithm. 
 

Non-Repudiation Repudiation is the rejection of an agreement.  Nonrepudiation 
in cyber security refers to the ability to ensure that the party to 
a communication cannot deny the authenticity of a digital 
signature. 
 

NULL NULL Encryption cipher suite.   No encryption used, cipher 
used for authentication communication only, often during 
debug/testing process. 
 

PKI: 
Public Key Infrastructure 

A public key infrastructure (PKI) is a set of roles, policies, and 
procedures needed to create, manage, distribute, use, store, 
and revoke digital certificates and manage public-key 
encryption. 
In cryptography, a PKI is an arrangement that binds public keys 
with respective user identities by means of a certificate 
authority (CA). 

PSK: 
Pre Shared Key Encryption 

A shared secret key that was previously shared between two 
parties used for encryption and decryption of data. 

RSA Public key asymmetric encryption algorithm. RSA acronym 
based on names of authors Rivest, Shamir and Adleman. 
 

SHA: 
Secure Hash Algorithm 

Hash function maps arbitrary data to data of a fixed size.  The 
SHA family of algorithms designed by the NSA are used in 
creating digital signatures. 

Spoofing In network security, an attacker masquerades as a legitimate 
entity on the network in order to gain access to the entity's 
system or information. 

 
SSL:  
Secure Socket Layer 
 

 
Standard for establishing a secure link between two entities on 
a network.  Transport Layer Security (TLS) standards have 
superseded SSL.  However, the term “SSL” is often used to 
refer to either the earlier SSL protocol as well as the newer TLS 
protocol and libraries. 
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TCP:  
Transport Control Protocol 

Provides connection management and guaranteed end to end 
delivery of data between two network devices.  Transport Layer 
Security (TLS) uses TCP services. Reference IETF RFC 5246. 

TLS: 
Transport Layer Security 

Transport Layer Security (TLS) is the successor cryptographic 
protocol to Secure Socket Layer (SSL), that provides secure 
connections over a computer network.  Both are often referred 
to as SSL. Reference IETF RFC 5246. 

UDP: 
User Datagram Protocol 
 

Connectionless data transmission protocol.  D(TLS) uses UDP 
services 

X.509 Standard for a Digital security certificate using the PKI to verify 
that the public key belongs to the entity contained within the 
certificate. (Standards Organization: United Nations ITU-T) 

 

Introduction 
 
Adding CIP Security to a new or existing project is a serious undertaking that involves several important 
decisions and considerations.  It is important to understand the key points in these decisions, and 
ramifications that a particular path may have with regard to both CIP Security and the overall product. 
 
Within this paper, several considerations are raised and discussed, along with potential options being 
offered where appropriate.  Although it is not possible to exhaustively list all possible decisions and 
impacts that CIP Security would have to a product, this paper aims to provide a reasonable overview to 
help product developers in adding CIP Security support to a new or existing product.  
 

Library considerations 
 
The (D)TLS library is one of the core components in CIP Security as it provides a secure transport 
mechanism using the standard Transport Layer Security (TLS) and Datagram Transport Layer Security 
(DTLS) protocols. TLS and DTLS make use of the IETF-standard, RFC 5246 and RFC 6347 respectively, 
protocols in order to provide a secure transport for EtherNet/IP traffic. The (D)TLS library sits between the 
TCP/IP stack and the application protocol (EtherNet/IP over TLS and DTLS). 

EtherNet/IP over TLS and DTLS 

(D)TLS library 

TCP/IP stack 

Physical layer 

Figure 1 EtherNet/IP over TLS and DTLS Layering 
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The (D)TLS library is a large and complex piece of software and it is crucial that all parts implemented in 
this library are designed with security in mind. Even the smallest and simplest design flaws or bugs in the 
(D)TLS library might compromise the security the device and in the end the whole system. For those 
reasons it is not recommended to roll your own (D)TLS library. Instead it is recommended to obtain an 
existing and well known (D)TLS library.  
 
There are many things, ranging from cost and license for the library to size and performance, to consider 
when evaluating and choosing a (D)TLS library. This section will touch some of the things that should be 
considered when choosing a (D)TLS library. Since there are many factors to consider and many of them 
are business related, it is not possible to give any specific recommendation. There are many (D)TLS 
libraries available from different vendors and sources all with their own respective pros and cons. 
Therefore, each vendor should select a (D)TLS library based on their needs. 
 
In this paper four different (D)TLS libraries have been investigated. They have not been compared head 
to head but rather used as references giving directions and pointers regarding the different things looked 
at in the library consideration section. The libraries that have been of most focus are the ones targeting 
embedded systems running on a smaller microcontroller. The four libraries that have been looked at are: 
 

 OpenSSL 

 wolfSSL 

 mbed TLS (formerly known as PolarSSL) 

 MatrixSSL 
 

Cost and license 
There are both free and commercial (D)TLS libraries, some of the libraries are available under a 
dual-license model meaning there are both a free and open source version as well as a 
commercial license version that can be purchased.  
 
One of the most well-known and used libraries, OpenSSL, is a free and open source library. 
Since OpenSSL is open source, anyone can view the code and for this reason security related 
issues with the library can possibly be discovered earlier. The dual-license libraries use the same 
idea, making the source code publically available so anyone can view it and thus possibly having 
security related issues found earlier.  
 
The dual-license libraries are usually published under GPL and thus making the libraries free to 
use as along as the source code they’re integrated in also are published publically. In most cases 
this is not an acceptable license for most companies building products using CIP Security. 
Instead the company behind the dual-license library provide a paid version of the library and in 
this case it comes under a different type of license model. The companies offer different types of 
the paid licenses, ranging from a per-unit cost to full buy-outs. The dual-license is attractive since 
it’s possible to start out using the free version for testing, initial development, and prototyping and 
when getting closer to finalizing the product a paid license can be obtained making it possible to 
sell the product without having to disclose the full source code of the product.  
 
Some of the free and open source libraries are available under different licenses that allow them 
to be used for free and without any more restrictions than maintaining a copyright notice in the 
written documentation. OpenSSL for example is distributed under a BSD like license.  
 
Support 
Choosing a commercial (D)TLS library generally provide some sort of professional support from 
the library vendor. And as all cases when purchasing software, the support of it might come 
directly from the vendor of the library or from the distributor. That of course can be a big 
difference especially in the case of (D)TLS libraries which are rather large and complicated pieces 
of software.  
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The non-commercial (D)TLS libraries generally have a rather large and active community behind 
them. And the support in those cases comes from the library developers and other users of the 
library. This doesn’t necessarily mean that it’s of less help than the support expected from a paid 
and commercial library. However, the amount of support and the time it would take to get help 
from the community behind the non-commercial libraries may vary between the libraries and also 
when the help is needed.  
 
Since the of (D)TLS libraries can be configured in many different ways and also provide a lot of 
function calls it’s important that they come with good documentation. The level of documentation 
differs a lot between libraries.  
 
OpenSSL has a lot of well written documentation which is easy to access and use when already 
up and running. However, it does not provide a good introduction to get started and set up things, 
this on the other hand can be found at other places.  
 
MatrixSSL, mbed TLS, and wolfSSL all have good and useful documentation on how to port, 
setup, and get started with the libraries. They also come with easy example applications for both 
clients and servers. The API documentation varies a lot between the libraries but are overall 
enough and easy to understand. 
 
Reputation 
That the (D)TLS library is well-known and widely used is important to provide assurance that it’s 
possible to use the library as a building block in creating a secure product. OpenSSL is probably 
the most well-known library around and it’s being used in Linux and Unix distributions, amongst 
others. It also has a good reputation of being stable and well tested.  
 
MatrixSSL, mbed TLS, and wolfSSL have been around for many years and the companies behind 
the libraries have been successful selling the libraries. They all have references to well-known 
companies and projects using their libraries. 
 
Vulnerability Management 
Having a well-defined and working procedure for dealing with vulnerabilities is important for the 
makers of a (D)TLS library. When a vulnerability is discovered and reported the makers of the 
library must act in a timely manner to fix the vulnerability in the library.  
 
The vulnerability management process should include procedures for how to deal with reported 
common known vulnerabilities, Common Vulnerability and Exposures or CVE for short. A CVE 
Identifier is a unique number that can be used over different security advisories by different 
vendors to refer to the same issue.  
 
OpenSSL, mbed TLS, and wolfSSL all list the CVEs that affect certain versions of the library and 
in what versions they have been addressed. By doing this users of the library can see that the 
library makers actively update and correct issues and vulnerabilities in the library. 
 
Another thing that’s an important part to consider when it comes to a library’s vulnerability 
management process is the ability to report possible issues. It is important that vulnerabilities that 
are discovered and how the makers of the library work with the reporter to find out and determine 
if the issue is real and a valid vulnerability for the library. 
 
There should also be a way to subscribe to updates and changes in the library so potential 
vulnerability fixes are received quickly, instead of actively having to go out and check for updates 
at the library’s website.  
 
Footprint 
Depending on the type of device that is implementing the library the memory footprint might be 
very important. In the smaller embedded devices that run EtherNet/IP today there might not be 
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enough memory, both non-volatile and RAM, to implement a (D)TLS library. Larger devices like 
connection originators, i.e. PLCs, generally have more memory and thus the memory footprint of 
the library is of less importance. Also, since the (D)TLS library is a large piece of software adding 
that to an existing product that doesn’t support CIP Security over EtherNet/IP might be an issue. 
For that reason the footprint of the (D)TLS library is of high importance.  
 
There are some (D)TLS libraries that are specifically designed for embedded devices. Those 
libraries generally consume less memory, both non-volatile memory and RAM, than libraries 
designed to run on a desktop computer. Also the libraries designed for embedded systems often 
can be configured to use its own heap. This can, in some cases, make the design easier if the 
existing design doesn’t already have dynamic memory management. The libraries designed for 
desktop computers rely on existing dynamic memory system and system calls.  However, the 
embedded libraries don’t make use of this operating system infrastructure, and often can be 
configured to run in an environment with no operating system whatsoever. 
 
Since embedded devices usually don’t have a lot of memory it’s important that the library is 
scalable so it can be configured to only include functionality required for CIP Security over 
EtherNet/IP. The (D)TLS libraries that are designed with the intention of being used in embedded 
systems generally provide an easy way to enable and disable functionality and thus allow them to 
be tailored and configured in the most effective way.  
 
Libraries like OpenSSL that were designed to be used as a (D)TLS library for computers  
generally don’t provide the developer with as many configuration options to fine-tune them to the 
lowest level. However, since those libraries generally are used in more capable and higher 
performant devices that might run Linux or similar, the memory footprint isn’t likely an issue in 
those cases. 
 
Capabilities 
CIP Security over EtherNet/IP puts some requirements on the (D)TLS library. The key items that 
the (D)TLS library has to support in order to be able to use it for implementing CIP Security over 
EtherNet/IP are: 

 TLS has to be at least version 1.2 

 DTLS has to be at least version 1.2 

 Cipher suite requirements as mandated by the specification 

 Allow the use of pre-shared keys or X.509 certificates for endpoint authentication  

 Allow use of either RSA or ECC public/private key pairs  

 Provide data encryption (in addition to data integrity), or data integrity only (null 
encryption)  

 
OpenSSL, mbed TLS, and wolfSSL all support the requirements listed above. However, 
MatrixSSL doesn’t support cipher suites for data integrity only (NULL cipher suites). For this 
reason MatrixSSL can’t be used as an alternative for CIP Security over EtherNet/IP. 
 
Performance 
In order to implement the TLS protocol the (D)TLS library needs to perform a number of 
supporting cryptography operations and message digest operations, such as the SHA-256 hash 
algorithm. Those operations are all computation and processing heavy. And in order to implement 
CIP Security over EtherNet/IP on an embedded device performance is extremely important.  
 
The TLS protocol requires a lot off processing power.  However, processing power might not be 
the first thing considered when choosing a microcontroller for an embedded system, so time 
might have to be spent on optimizing performance. It’s been shown that it’s possible to run CIP 
Security over EtherNet/IP on low end microcontrollers like Cortext-M3. But this generally requires 
that work is done to profile the system and analyze where the time is spent when performing the 
cryptography operations and message digest operations. The code where the most time is spent 
could potentially be optimized or placed in faster memory. Also some microcontrollers have 
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hardware accelerators for performing cryptography and message digest functions (see the 
section on hardware architecture for more information on this). The (D)TLS library can then be 
ported to use the hardware accelerators instead of code that executes on the micro controller. 
This can in many cases dramatically improve performance and at the same time decrease the 
memory footprint. Some (D)TLS libraries have porting functions to make the integration job 
easier.  
 
 (D)TLS libraries also make heavy use of a heap and a lot of the cryptography and message 
digest functions are performed against data on that heap. Thus it’s important that the heap is 
placed in a memory with high bandwidth and latency against the microcontroller or CPU. Placing 
the heap in a specific memory location is naturally easier to do if the library makes use of a 
dedicated heap.  
 
Non-scientific tests have been performed to compare the performance of mbed TLS on a 
microcontroller system, using Cortex-M3, and a system running an application processor, dual 
Cortext-A8. No efforts were made to optimize the code, i.e. the library was compiled out of the 
box using the standard configuration options. In both cases GCC was used to compile the code 
and the same optimization level was used. The application process system was running Linux 
and the embedded system ran a home grown RTOS. The tests showed that the raw processing 
power of the application processor did make a big difference in performance. On the application 
processor system, the initial TLS handshake took tenths of milliseconds compared to seconds on 
the microcontroller system. That said, it’s possible to optimize performance on the microcontroller 
to achieve an initial TLS handshake in the range of 100 milliseconds.  
 
Technology 
The libraries reviewed in this section were all written in C and for that reason likely easy to 
integrate in the environment most EtherNet/IP products are developed in. Beyond the four (D)TLS 
libraries mentioned here there are many other libraries, some of them written in other languages. 
Based on the environment used to implement a certain product, research needs to be done to 
find a (D)TLS library suited for that specific environment.  
 
Besides this, the smaller (D)TLS libraries that are designed to be used in embedded systems, like 
MatrixSSL, mbed TLS, and wolfSSL are all written in a way where it’s possible to run them bare-
metal, i.e. without an operating system underneath.  
 
Depending on the runtime environment where the libraries are intended to be used, this is 
something that needs to be considered. If using an operating system that provides all of the APIs 
and libraries that OpenSSL expects, it would likely make it easy to integrate. If the product doesn’t 
have an operating system or just a simple RTOS without standardized system calls and libraries, 
then it would likely make it easier to use the smaller libraries intended for embedded systems. 
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Summary of library considerations 
The table below give a brief summary of the sections covered above related to the library 
considerations. The library consideration section and table will to help assist choosing a library. 
However since there are many parameters besides what is discussed in this paper that affect the 
choice of TLS library, each vendor should consider their needs and do a thorough investigation. 

 OpenSSL wolfSSL mbed TLS MatrixSSL 

Cost and 
license 

Free Dual-license Free Dual-license 

Support Good Good Good Good 

Reputation Good Ok Ok Ok 

Vulnerability 
Management 

Good Good Good Unknown 

Footprint High Low Low Low 

Capabilities Good Good Good Low 

Performance Unknown Unknown Unknown Unknown 

Technology Good Good Good Good 

Table 1 TLS library summary 
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Key Management and Secure Identity 
 
 
(D)TLS connections always start with at least one side having security credentials (which are either a 
PSK or certificate).  The general model of CIP Security is for the user to provision a product with 
credentials that can be used to make and/or receive (D)TLS connections.  However, this begs the 
question: how can security be applied to the connection that is used to provision the product with these 
credentials?  A set of default credentials are necessary to bootstrap this secure connection.  Using the 
default credentials, a secure connection is made to provision the device with its initial credentials (either a 
PSK or a certificate), as well as any other appropriate CIP Security configuration.  Once this initial CIP 
Security configuration is completed, the default credentials are no longer used to create secure 
connections (unless the product is returned to a default out-of-box state). 

DeviceClient

Default 
Credentials

Default credentials (certificate) 
is used to create a TLS 

connection

DeviceClient

Initial 
Credentials

Initial credentials and other CIP 
Security configuration are sent over 

the established TLS connection

DeviceClient

Initial 
Credentials

The TLS connection is torn down, 
and any new connections are 
established using the Initial 

Credentials

Default 
Credentials

 
Figure 2 Commissioning credentials 
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There currently exist two options for the default identity.  One is a Self-Signed Certificate, and the other is 
a Vendor Certificate.  Each of these options has advantages and disadvantages which will be discussed 
in more detail.  However, it is necessary first to understand the threats against initial commissioning.  
 
There are two types of credentials that can be commissioned; a PSK or a certificate.  The commissioning 
for each of these types of credentials has unique risks and threats.  A certificate is public information, and 
a PSK is private.  Therefore, when a PSK is commissioned there is a risk to the confidentiality of the 
communication, as an attacker who can discover the PSK value can both communicate on the system, as 
well as perform spoofing, data tampering, and information disclosure attacks on devices using the PSK.  
For certificate based credentials, there is no need for confidentiality during commissioning, as all of the 
information within a certificate is public (note that there may still be a marginal benefit to this confidential 
communications to prevent the attacker from knowing what type of configuration the system is using 
altogether).  However, an attacker that can launch a data tampering or spoofing attack on the connection 
used to commission the initial credentials can certainly compromise the device being commissioned.  The 
attacker would have the ability to tie the certificate to a key under his/her control, or to tamper with the 
device’s credentials.   
 

 Threat 

Credential Type Data Tampering Information 
Disclosure  

Spoofing 

PSK Applies Applies Applies 

Certificate Applies Doesn’t Apply Applies 

Table 2 Credentials vs threats 

With the threats enumerated, it is possible to briefly discuss the risk each poses.  For data tampering, in 
the case of either a PSK or a certificate this would result in the endpoint’s credentials being 
misconfigured.  This might prevent the endpoint from communicating properly on the system, or might 
cause the endpoint to communicate with other endpoints that were not intended.  Information disclosure 
represents no risk to the certificate, as all the information is public.  However, in the case of configuring a 
PSK, learning the value of the PSK has the potential to compromise the confidentiality and integrity of all 
future communications.  This applies not just for the endpoint in question, but for any other endpoints that 
are using the same PSK as credentials.  Spoofing of the target allows an attacker to provision an 
endpoint under their control with the credentials intended for the original target endpoint. 
 
The two possible categories for default credentials are a Self-Signed Certificate and a Vendor Certificate.  
Each of these options provide different guarantees for the level of risk.  To truly analyze the risk mitigation 
provided by each of these options, one would need to understand actual implementation.  However, a few 
general conclusions can be made.  The mitigations each of these options provide, as well as other 
considerations, are detailed in the following sections. 
 

Self-Signed Certificate 
A Self-Signed Certificate is certainly the simpler of the two options, and in this simplicity lies the 
greatest benefit of the Self-Signed Certificate.  No product PKI is necessary to be created and 
maintained, and no hardware-based secure key storage is necessary for the product.  These are 
things that generally cannot be feasibly done in a field update.  However, a product can relatively 
easily generate a Self-Signed Certificate via a field update.  Furthermore, beyond the cost of 
storing data (on the order of a few kilobytes of memory), there is very little additional cost to 
implementing this beyond the general (D)TLS library.   
 
Although the Self-Signed Certificate brings many benefits in the form of simplicity and low cost, it 
does have some drawbacks.  The Self-Signed Certificate does little to protect against the 
spoofing case.  A Self-Signed Certificate can be easily spoofed (as one can be generated by any 
attacker).  Without out of band checking there is no guarantee of certificate authenticity, and 
therefore no guarantee that the connection is established with the intended device.  However, if 
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the connection is indeed established using the intended device’s Self-Signed Certificate then that 
connection does provide some security benefits.  Assuming a cipher suite is chosen which 
includes confidentiality, then this would be an effective mitigation against information disclosure 
(as well as data tampering).  Note that this is predicated on the successful establishment of a TLS 
connection using the intended Self-Signed Certificate.  Put another way, the large weakness here 
is with the initial connection establishment, as an attacker could replace the intended Self-Signed 
Certificate with one under his/her control, in which case all security benefits on that connection 
are lost. 
 

DeviceClient Self-Signed 
Certificate

The Attacker intercepts the 
Device’s Self-Signed Certificate and 

inserts the Attacker’s (also Self-
Signed) Certificate.  This action is 

not detectable by the Client 
without some out of band checking.

Attacker

Attacker’s 
Certificate

 
Figure 3 Certificate interception 

 
Vendor Certificates 
In contrast to a Self-Signed Certificate, the Vendor Certificate adds some level of complexity to 
the product implementing it.  The two main areas of complexity introduced by Vendor Certificates 
are a product level PKI and secure key storage.  Strictly speaking, neither of these is absolutely 
necessary for the implementation of Vendor Certificates.  However, these aspects help 
significantly to realize the benefits of Vendor Certificates.  A product level PKI is necessary for 
providing the signing services that sign the Vendor Certificates.  There are many considerations 
for this, such as scale, availability, security, etc.  Different products/organizations will have 
different needs in this area, therefore it is not possible to describe a product level PKI that would 
be appropriate for all use cases.  However, in general setting up a PKI in a moderate to large 
organization is not trivial, in terms of cost, effort, and complexity.  One important area of 
consideration is around the protection of the signing keys; if the signing key is compromised then 
the PKI essentially loses its value.  Therefore, threat modeling and risk assessment activities 
should be undertaken to guide the level of protection necessary. 
 
The other aspect of Vendor Certificates that merits discussion is the secure key storage.  
Whereas the product level PKI was around the keys and services for signing Vendor Certificates, 
the secure key storage is around the protection of each product’s private key (which corresponds 
to the public key present in the Vendor Certificate).  Protection of this key is important because 
the ability to use it allows an attacker to impersonate the product.  Again, there are a wide range 
of solutions that can be applied here, from simple data obfuscation to robust hardware 
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mechanisms.  What solution is implemented depends on many factors that are outside the scope 
of this document (but also should undergo threat modeling and risk assessment activities to drive 
the decision).  In summary, implementing Vendor Certificates will certainly add cost and 
complexity to a product.   
 
In many ways Vendor Certificates are susceptible to the same risks and threats as a Self-Signed 
Certificate.  However, Vendor Certificates do offer a clear advantage in this area; which is the fact 
that their authenticity can be verified by anyone with the proper verification key.  That is, the 
spoofing attack described with the Self-Signed Certificates changes.  If the client verifies the 
authenticity of the device’s Vendor Certificate, then it is no longer possible for this spoofing attack 
to occur.  However, this benefit comes with some caveats: 
1. The client must know a priori the public key used to verify Vendor Certificates.  This means 

the client may need to maintain a list of several keys from several different vendors.  These 
keys are all public information, so it is more a matter of building this knowledge into the client. 

2. Compromising any Vendor Certificate breaks this scheme.  If an attacker is able to 
compromise any Vendor Certificate of a trusted vendor, then it can be used to spoof the 
device’s valid Vendor Certificate.  That is, this scheme is only as good as the weakest Vendor 
Certificate trusted by the client.  This implies that any vendors participating should implement 
a robust PKI as well as robust secure key storage, as both of these are likely compromise 
points. 

 
Note that similar to the Self-Signed Certificate, once a Vendor Certificate has been used to 
establish a TLS session, then that session will benefit from all of the normal TLS protection 
mechanisms.   
 
Although somewhat outside the scope of CIP Security, it is useful to note that there can be other 
benefits of Vendor Certificates.  These certificates allow for authenticity checks on a given 
product and can be used to prevent cloned products (as a clone would presumably not have 
access to the PKI needed to create a valid Vendor Certificate). Furthermore, Vendor Certificates 
can be used to provide authenticity and non-repudiation of data produced by a given product (via 
cryptographic signing).  Depending on the product’s use cases this might be a useful feature to 
include, and could help to justify the cost of implementing Vendor Certificates.   
 
 

Vendor Certificates and Self-Signed Certificates are both viable options for default credentials.  Vendor 
Certificates do provide some additional security benefits, especially in terms of the added difficulty of 
spoofing the certificate used to establish an initial TLS connection, yet at the cost of increased complexity.  
Another important area of discussion revolves around a system that uses both Vendor Certificates and 
Self-Signed Certificates.  In this case the “weakest link” of the system in the Self-Signed Certificates; 
therefore, the benefits of the Vendor Certificates are vastly reduced or even lost.  As the system will need 
to accept a Self-Signed Certificate, then that is the lowest acceptable security level, and therefore can be 
used to launch spoofing attacks as described.  Despite this, Vendor Certificates can bring additional 
benefits outside of CIP Security, and should still be considered for usage.  Any decision on which 
implementation is used should be made through careful consideration of requirements, as well as threats 
and risks on a given product.  The information here can and should be used as a basis to start the 
discussion around the costs and benefits to each solution, but ultimately vendors must decide what 
makes the most sense for their given products. 

 

Connection Origination 
 
An EtherNet/IP network will be more exposed to attack when non-secure devices are allowed to exist on 
the same network as secure devices. However, it is also recognized that the rate of adoption of CIP 
Security amongst device suppliers will vary over time. Further, end users may choose to continue with 
certain non-secure legacy devices after secure scanners are installed.  
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In Chapter 1 of CIP Security (Volume 8) it specifies the following: Devices that support CIP Security must 
still be able to interoperate with devices that do not support CIP Security, on the same network.  It should 
be a matter of end user configuration to allow or disallow such a mix of devices on the network. When 
mixing devices with secure and non-secure communications, it is the end user’s responsibility to manage 
the device and network configuration appropriately.  The user may need to provide additional controls 
such as firewalls or physical security means. 
 
In the hybrid world where non-secure devices will coexist on a network, the Originator of communications 
(Scanner) must “know” the security related communication types of its targets. Therefore, it will be 
incumbent upon the scanner device vendor to offer a mechanism to differentiate both secure and non-
secure communications with devices on the EtherNet/IP network. This section of the paper is intended for 
scanner device implementers. 
 
As a matter of course, vendors will develop configuration tools to accommodate the complexities of CIP 
security configuration.  Using vendor specific configuration tool may be the preferred mechanism to 
identify connection types.   
 
The CIP defined Connection Configuration Object (CoCo) provides a standardized method to create, 
configure and control CIP connections. To specify a “security” connection, include the (D)TLS port in the 
connection path attribute (6) of a CoCo instance. For example, an “unsecure” connection would have a 
connection path of “192.168.10.10”, while a “secure” connection would have a connection path of 
“192.168.10.10:2221”. 
 

Debugging/Testing 
 
Understanding TLS connection problems can sometimes be difficult, especially when it’s not clear what 
messages are actually being sent and received. However, since CIP Security over EtherNet/IP uses an 
identical application layer and just minor deviations in the communication compared to EtherNet/IP, the 
messages communicated should be known. For the same reason it’s unlikely that there will be any larger 
issues with the application layer data communicated. And in the cases where there are issues with the 
EtherNet/IP application data or communications it’s better, if possible, to debug this without running 
EtherNet/IP on top of TLS. 
 
When running EtherNet/IP the traffic can easily be captured and decoded with Wireshark using the 
correct infrastructure devices. When running CIP Security over EtherNet/IP it’s still possible to capture 
and see the traffic in Wireshark, but naturally it’s not possible decode the traffic and see the exact 
contents since it might be encrypted. There are however some things that should be done to help and 
ease debugging issues when running CIP Security over EtherNet/IP. One option is only use NULL 
encryption cipher suites, and thus only use authentication-only communication. Volume 8 defines three 
(D)TLS certificate cipher suites, one each for RAS, ECC, and PSK with NULL encryption. When using 
one of those cipher suites the data won’t be encrypted, thus the data can be decoded using Wireshark.  
 
In the cases when it’s not possible to change the cipher suite, i.e. in a real installation, it’s still possible to 
decode the actual traffic. This is accomplished by providing Wireshark with the private key, and naturally if 
this is in a real installation this isn’t possible for security reasons. Also, it’s worth mentioning that 
Wireshark cannot decrypt Diffie Helleman cipher suites. These are cipher suites with DH in their name; 
among the cipher suites that Volume 8 defines only three are non Diffie Helleman cipher suites. 
 
The most likely issues that needs to be debugged are the initial communication and the TLS handshake. 
There are many different things that initially can go with the TLS handshake when starting a new 
development and porting the (D)TLS library for the first time. The TLS handshake can easily be captured 
and analyzed using Wireshark since it is not encrypted. One tool that’s handy with doing initial tests and 
debugging is OpenSSL. OpenSSL comes with a command line client, this command line client can be 
used to perform just the TLS handshake. This is accomplish by issuing something like: 
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$ openssl s_client -connect <host ip>:2221 
 
This command in conjunction with Wireshark can be really useful during initial development. It’s also 
possible to provide the OpenSSL command line client with real certificates and keys doing something like: 
 
 
$ openssl s_client -connect <host ip>:2221 –cert certandkey.pem –key certandkey.pem 
 
Doing this it is possible to perform the full TLS handshake and test out that the certificate and key 
handling works correctly. This is useful when testing and verifying the CIP Security object and their 
interaction to the (D)TLS library.  
 
The OpenSSL command line tool can also be used to test and debug other things. It provides options to 
test protocol support making it possible to verify that for example only TLS 1.2 is supported. There are 
also options to test out server-side cipher suite support. This is useful for testing out and verifying that the 
(D)TLS library has been correctly configured and setup to support the required cipher suites. 
 
Another tool that is useful to verify the protocol support and implemented cipher suites in the server is 
nmap. This command can be used to list all cipher suites and supported protocols. This is accomplished 
with the following command line: 
 
$ nmap --script ssl-enum-ciphers -p 2221 <host ip> 
 

Performance Considerations 
 
Adding CIP Security to a product is associated with a cost regarding high performance requirements on 
the processing unit of the product. Before actually implementing and testing CIP Security it’s impossible 
to tell if an existing product can handle the performance degradation that TLS adds to CIP Security over 
EtherNet/IP. Running CIP Security over EtherNet/IP can be done on almost any processing unit but on 
smaller low end 8-bit microprocessors the product would likely end up being far too slow to be considered 
usable. However, many products (probably the majority) that have been developed in the last several 
years are built using 32-bit microprocessors.  These are also most likely to be the products in which CIP 
Security is supported.  Those devices are most likely capable of handling the performance degradation 
that comes with TLS and CIP Security over EtherNet/IP. 
 
It’s impossible to provide any rule of thumb if a certain processing unit will be capable of handling the 
addition of CIP Security. The reason being that there are many factors that vary and influence the overall 
performance requirements. Some of those factors are: the compiler being used and how well it can 
optimize the code, the performance and the bandwidth between the processing unit and the memory, how 
well the existing TCP/IP and EtherNet/IP stack perform, how well the TLS library used performs on the 
platform being used, if the processing unit has hardware accelerators for the cryptographic primitives, and 
if the compiler and TLS library are capable of making use of those. Besides this there are other factors 
that may affect the overall performance such as, which development tools and which specific platform 
were used.  Many of those items can be overcome and worked around to make the overall product 
perform better.  
 
There are some specific things that are of interest when considering the performance, the connection 
startup and the data flow during the connection. These are things that can be optimized in different ways 
and may need work to create a usable and well working product. 
 
During the connection startup the TLS handshake takes place. This is when the two endpoints in the 
communication negotiate the details of which encryption algorithm and cryptographic keys to use before 
the first byte of data is transmitted. Also during this time the two endpoints are authenticated which is 
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done using public-key cryptography. This is a computationally heavy process that requires a lot of 
processing power from both sides in the communication. 
 
During the data flow, i.e. primarily class 0/1 communication, two things impact the data latency: bulk 
encryption and message integrity. For the bulk data encryption this can be disabled by the end user by 
selecting one of the NULL encryption cipher suites, this however then provides no confidentiality but in 
many applications that’s an acceptable tradeoff. For the message integrity part, which is a hash function, 
it can in many cases be optimized. The optimization can be done either in C or using an assembly-
language optimized implementation. 
 
In many processing units there are dedicated cryptographic hardware accelerators. Those hardware 
accelerators can provide functionality to assist the calculation of the different cryptographic primitives 
used for TLS. The hardware assisted support varies a lot and has to be looked at closely when choosing 
a processing unit for a new product. Some processing units provide hardware acceleration for all the 
cryptographic primitives, such as hash-functions, symmetric key algorithms, and public key algorithms – 
both Elliptic Curve and RSA. In those cases it’s possible to offload the main processing unit a lot and 
achieve near line speed cryptography for both bulk data encryption and message integrity. Using 
hardware assisted cryptography naturally comes with a higher per unit cost. But considering the 
importance of CIP Security this is probably a good thing to consider when designing new products. Many 
silicon vendors offer pin compatible processing units with and without hardware assisted cryptography 
engines, thus it’s possible to add the hardware assisted option later on and release this as a new updated 
product with higher and better capabilities. This without having to redesign the hardware, but just 
mounting a different part during manufacturing.  This is discussed further in the next section, “Hardware 
Architecture Considerations”.  

 

Hardware Architecture Considerations 
 
For CIP Security there are three main areas in which hardware may be particularly beneficial: 

 Hardware that provides secure key storage 

 Hardware that provides cryptographic acceleration 

 Hardware that provides entropy generation 
 
These hardware components are not required for CIP Security, but it is likely that many products would 
benefit from this additional hardware.  Each of these is discussed in more detail within this section.  Note 
that a single piece of hardware may perform more than one function; these functions would not 
necessarily need to be implemented as three separate hardware solutions.  No matter what hardware is 
selected, there are some issues that need to be addressed regardless of the functionality included in the 
hardware: 
 

 Trust boundaries:  Some hardware is within a processor, some is on a printed circuit board 
(PCB), and some is easily removable (as in on a USB stick).  Which is chosen depends on use 
case as well as the boundary of trust. 

 Performance: Depending on the type of countermeasures employed and the underlying 
technology, hardware based secure key storage can reduce overall system performance.  It is 
important to understand if the performance is acceptable for the given system. 

 Capabilities:  The key storage hardware may only support a limited number of algorithms and/or 
keys.  The CIP Security spec limits what must be supported, but it might be desirable to have 
other algorithms for both future usage and for other uses within a product. 

 Cost:  Including extra hardware on a product is certainly not free, an organization will need to 
decide what cost they are willing to pay to have the extra capabilities given by secure storage 
hardware. 



2017 ODVA Industry Conference 18 ©2017 ODVA, Inc.  

 Contention: More than one part of the system may need to use a given hardware resource.  
Mechanisms for dealing with this are an important consideration, whether they be hardware-
based, software-based, or some combination thereof.   

 
Beyond these general issues, there are considerations specific to each hardware function: 
 

Secure Key Storage Hardware 
As discussed in the section on secure identity, if a product implements a Vendor Certificate then 
secure key storage is necessary to protect the private key associated with this certificate.  
Although software based options are available for this, hardware generally provides a more 
robust protection.  Hardware based key storage is useful beyond just protecting the key 
associated with the vendor certificate.  Keys associated with the certificate sent to a device by a 
user (for CIP Security) can also be protected by hardware based secure key storage.  Best 
practices denote that the key is generated by the device and the private portion of the key never 
leaves the device.  Hardware based secure key storage allows a device to achieve this for the 
keys associated with (D)TLS communications.  Furthermore, many devices have other uses for 
protecting data, of course hardware based secure key storage may be used to protect other data 
beyond that associated with (D)TLS communications.   
 
 
Cryptographic Acceleration Hardware  
CIP Security involves a significant amount of cryptographic operations on communications 
packets, which of course results in a performance impact.  However, a product that includes 
specialized hardware for cryptographic acceleration can reduce or even eliminate the burden of 
these cryptographic operations on the main processor.  There are two essential categories of 
cryptographic operations that are needed in CIP Security.  One is the public key, or asymmetric 
operations.  These are generally done during connection handshaking; examples include RSA, 
ECC, Diffie Hellman, etc.  The other are symmetric operations, which are generally during the 
lifetime of the connection (once the handshaking is complete).  Examples include AES, SHA, etc.  
Depending on the needs of the device, hardware can be used to assist either or both of these 
operations.  Note that in general, the asymmetric operations take longer time and place a higher 
burden on the system.  However, as these are mainly done as part of the connection handshake 
their impact is limited.  The symmetric operations are generally faster, but occur much more often 
as there is at least one operation done on every packet that is sent or received.  Throughput and 
latency targets are of course product specific, but hardware can be used to help achieve these 
targets.  The following flowchart can aid in the decision-making process around what type of 
cryptographic accelerators to use: 
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Figure 4 Hardware cryptography decision flow-chart 

 
 
 
Entropy Generation Hardware 
Another important area for hardware assistance is that of entropy generation. If possible, using a 
hardware based source for randomness is generally the best option.  As such, when considering 
what hardware to include in a product a hardware based random number generator should 
certainly be kept in mind.  More discussion on this is given below on the Entropy Sources section.   
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Entropy Sources 
 

True Random Number Generators 
Generation and management of cryptographically strong entropy is essential for the security of 
(D)TLS sessions.  The CIP Security specification mentions that hardware based entropy sources, 
or True Random Number Generators, are to be preferred over any software based sources.  
Therefore, it is ideal if a dedicated piece of hardware for entropy generation can be placed on the 
product.  Even more ideal is for that hardware to include countermeasure protections such that 
the entropy source is well protected, even inthe case of other parts of the system being 
compromised by an attacker.  Keys generated by this hardware should stay within the hardware 
for the key lifetime.  Furthermore, the hardware should be designed such that it is compliant with 
well-known standards for entropy generation (such as NIST SP 800-90).  Although not generally 
necessary, more than one True Random Number Generator (TRNG) within a product may 
provide further security advantages through redundant mechanisms and diversity of sources, 
albeit at greater product cost. 

 
Lack of Specialized Hardware 
The above describes the ideal entropy generation support for CIP Security.  However, it is 
recognized that this may not be feasible for all products.  Some products may need to gather 
entropy from sources other than a True Random Number Generator.  If this is the case it is still 
possible to gather entropy on a product (although maybe not at the same quality as a True 
Random Number Generator).  This section will provide some general guidelines for gathering 
entropy on such a product. 
 

o Use Physical Sources – All products run (at some point) on some sort of hardware.  
Hardware is necessarily a physical entity, subject to laws and constraints of physics.  As 
such, there is a degree of randomness and entropy to hardware.  Inspect the system for 
hardware which may exhibit some form of randomness.  Likely areas of this include 
oscillator drift, RAM decay, and various monitoring/diagnostic circuitry (for example a 
temperature monitor).  Generally, the higher the resolution these sources are, the more 
randomness they will exhibit (for example, a temperature monitor that reports in degrees 
Celsius to more than one decimal point).  

o Combine Sources – The more physical sources that can be combined generally yields 
better entropy, unless a second source degrades the entropy of the other more high 
quality sources. This also provides a diversity of input; even if an attacker compromises 
one entropy source to behave in a predictable manner the other sources can still provide 
entropy such that the product functions properly and robustly.  Furthermore, some 
sources may be slower to generate high quality entropy than others.  With more than one 
source used, this allows entropy to be available without being subject to the limitations of 
the slowest source. 

o Test Sources – It is important to run tests that give a measure of the quality of the 
entropy.  NIST SP 800-90 B provides extensive tests for entropy sources.  All sources 
should be tested to determine if there are enough suitable sources for the product.  Of 
course what constitutes a suitable source is dependent on the product’s security posture, 
although general guidance is given within the NIST publication. 
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Cipher suites 
 
One integral part of the TLS handshake is in which the client provides the server with a list of its 
supported cipher suites. The server selects one of the offered cipher suites that will be used during this 
connection. If no acceptable cipher suites are presented to the server, the TLS handshake will fail and the 
connection will be closed. Once the cipher suite has been agreed on and the connection has been 
established, the cipher suite insures the privacy, authentication, and integrity for the data that passes 
between the client and server over the (D)TLS session (connection).  
 
The cipher suite is what determines the level of security for the (D)TLS session. Some cipher suites even 
provide weak security and should not be used. For this reason it’s essential that the correct cipher suites 
are used and it’s of the highest importance to be careful in the cipher suites offered and accepted. The 
cipher suites defined by CIP Security for EtherNet/IP should be considered reasonable in terms of 
providing security. 
 
Since the cipher suite determines the level of strength in the cryptography algorithms used, they also 
highly impact the performance of the data flow on the (D)TLS session. Thus higher cryptographic strength 
picked by using a different cipher suite might degrade the packets per second a device is capable of 
producing and consuming. 
 
For authentication and key exchange the cipher suite defines the asymmetric algorithm used. From the 
cipher suites defined by CIP Security for EtherNet/IP this could be RSA or Elliptic Curve. RSA is generally 
more used and widely deployed then Elliptic Curve. Elliptic Curve on the other hand offer the same or 
better security with smaller key sizes. As a consequence of this the performance using Elliptic Curve can 
be higher. 
 
The bulk data encryption in CIP Security for EtherNet/IP, when enabled, relies on AES. AES is a standard 
for encryption and it contains a lot of variations. Though this standard is what’s adopted by the US 
government and now used worldwide. What’s defined for CIP Security is considered providing reasonable 
security for confidentiality.  
 
The data integrity is provided by HMAC and in the case for CIP Security for EtherNet/IP SHA-1 or SHA-2. 
Both SHA-1 and SHA-2 are accepted by NIST and considered providing enough security.  
 
Table 3 is a summary of different cipher suites used by CIP Security for EtherNet/IP.  

Cipher Suite Description 

TLS_RSA_WITH_NULL_SHA256 RSA for key exchange; null encryption; 
SHA256 for message integrity. Encryption is 
not provided. 

TLS_RSA_WITH_AES_128_CBC_SHA256 RSA for key exchange. AES 128 for 
message encryption, SHA256 for message 
integrity. 

TLS_RSA_WITH_AES_256_CBC_SHA256 RSA for key exchange. AES 256 for 
message encryption, SHA256 for message 
integrity. 

TLS_ECDHE_ECDSA_WITH_NULL_SHA ECDHE_ECDSA for key exchange; null 
encryption; SHA1 for message integrity. 
Encryption is not provided. 

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 ECDHE_ECDSA for key exchange. AES 
128 for message encryption, SHA256 for 
message integrity. 

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 ECDHE_ECDSA for key exchange. AES 
256 for message encryption, SHA256 for 
message integrity. 
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Table 3 Example of cipher suites 

The following table (included from NIST SP 800-57: Recommendation for Key Management) gives 
general guidance on the strength of cryptographic keys based on their key length.  Obviously longer keys 
provide better security, yet what algorithm is used is also relevant to the overall strength. 

 
Figure 5 NIST Cryptography Strengths 

Considerations for System Time 
 
As a part of a X.509 v3 certificate there’s a field named Validity which contains two dates, named 
notBefore and notAfter. The validity period for a certificate is the time from notBefore through notAfter, 
inclusive. This period is set when the certificate is generated and outside of this period of time, the 
certificate is invalid.  
 
In many of the control applications and systems controlled by EtherNet/IP there’s no need for a global 
system time. Generally the controller’s notion of time is sufficient, and there’s no need for a wider notion 
of time in the slave nodes. For this reason, most of the embedded systems on which EtherNet/IP 
products are build today have no notion of the global system time or a real time clock (RTC). Even though 
a CIP interface to IEEE 1588, Precision Clock Synchronization Protocol for Networked Measurement and 
Control Systems, is defined only niche EtherNet/IP products implement this for use in special 
applications. We can expect that the number of EtherNet/IP products implementing IEEE 1588 will 
increase over time and thus also the number of devices that will have a global notion of time.  
 
To make use of the validity in a X.509 v3 certificate, the EtherNet/IP device verifying the peer needs to be 
aware of the system time. Since the majority of EtherNet/IP devices don’t support this today there’s an 
attribute in the EtherNet/IP Security Object that allows the user to enable and disable the certificate 

TLS_ECDHE_PSK_WITH_NULL_SHA256 ECDHE in conjunction with PSK for key 
exchange; null encryption; SHA256 for 
message integrity. Encryption is not 
provided. 

TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256 ECDHE in conjunction with PSK for key 
exchange. AES 128 for message encryption, 
SHA256 for message integrity. 

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
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expiration check. Furthermore, this attribute is by default set to disabled, meaning that the peer’s 
certificate expiration shall not be checked.  
 
An EtherNet/IP device that implements IEEE 1588 or NTP to obtain the system time can enable the 
option to allow for the certificate expiration check. That the certificate’s validity is checked is preferable to 
making sure that old and expired certificates are used.  
 
It should be noted that IEEE 1588 doesn’t include any form of secure authentication mechanisms. 
Although recent versions of NTP provide for the possibility of authentication, in practice that’s not used. 
Most systems trust unauthenticated NTP replies to set the system clock. This mean that a Man-In-The-
Middle attacker can control a device’s clock, and by doing so violate the security properties for TLS. 
 
Lately, initiatives have been done to develop secure alternatives to NTP. Google is funding a project 
developing a secure time protocol called roughtime. The protocol aims to provide a rough time 
synchronization in a secure way. The “rough” time synchronization means that it’s not providing a precise 
and perfect time synchronization, rather it provides a synchronization within 10 seconds of the correct 
time, which is more than enough for use with security. Roughtime is a simple and light weight protocol 
that potentially could become the open secure alternative to NTP. 
 
In the future when there’s a secure and widespread alternative to NTP, which possibly could be 
roughtime, CIP Security for EtherNet/IP should probably standardize on that. And at some point, we 
recommend that as a suggested supported protocol for all devices implementing CIP Security for 
EtherNet/IP. 
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