

Discussion Topics

- Why isn't Ethernet at the Edge Today?
- Architecture of an Ethernet Node
- Scaling an Ethernet Node
- Example of a Low-complexity Ethernet Node
- Future Directions
- Conclusion

Ethernet in Automation

Automation Architecture vs. Ethernet Complexity

Architecture of an Ethernet Node

- MAC filter logic of limited use
- Process most Ethernet frames
- Protocols increase Flash / RAM
- Numerous high-speed pins
- Special layout considerations
- Hard to provide isolation

Mapping Ethernet to Node Architecture

Rx

Tx

Tx

Rx

Scaling An Ethernet Node for Low-complexity

1-Port Ethernet Device

2-Port Ethernet Device

- Target small-scale single-chip processing solution by reducing
 - o Processor speed / performance
 - Flash memory size
 - RAM size
- Reduce interconnect complexity from processor to network interface
- Reduce pin-count and complexity of network interface

Advanced MAC / Switch

- Instead of general filtering...
 - perform intelligent / dynamic frame filtering and buffering <u>before</u> any frames are communicated to the processor
- Manage priorities among protocols
 - i.e. this ARP request isn't for me, don't send on
 - i.e. this ARP request in lower priority than incoming EtherNet/IP implicit message, send EtherNet/IP message first
- Manage surges in frame receipt due to alignment of various protocols

Benefits

- Reduces overall buffer space
- Retain frames based on priority, application state, and processor load conditions
- Substantially reduces the amount of data transferred to and processed by the processor

Example Device with Low-complexity Ethernet

4..20 mA with HART

Connections for:

- 2-wire Potentiometer / RTD
- 3-wire Potentiometer / RTD
- 4-wire Potentiometer / RTD
- Voltage Measurement
- Thermocouple

4..20 mA

Process Variable (Temperature)

HART

- ➤ Calibration
- > Alarms
- ➤ Set Points

Supply Power: 12..42V

Power Consumption: < 1.5W

Cable length: up to 3km Bandwidth: 1200 Baud

Ethernet with future 2-wire

Connections for:

- · 2-wire Potentiometer / RTD
- 3-wire Potentiometer / RTD
- 4-wire Potentiometer / RTD
- Voltage Measurement
- Thermocouple

Ethernet

➤ Process Variable (Temperature)

Ethernet

- ➤ Calibration
- ➤ Alarms
- ➤ Set Points

Supply Power: 12..42V

Power Consumption: < 1.5W

Cable length: 200m..1km

Bandwidth: 100Mb/s..10Mb/s

Example Device Architecture

Architecture using current 4..20mA

(Source: ABB, "Industrial Temperature Measurement Basics and Practice")

Architecture using Low-complexity Ethernet concept

Low-complexity Ethernet concept provides similar:

- Processing power
- Memory footprint
- Total power budget
- Simple isolation scheme

Future Directions

- Reducing the footprint of Ethernet opens the door to other possibilities
- PHY-related
 - Ethernet over twisted-pair
 - Adding power
 - Adding Intrinsic safety
 - Will the IEEE 10SPE effort get us these?
- Processor-related
 - Nano-stacks
 - IP-to-the-Edge versus Ethernet-to-the-Edge
 - i.e. stack versus no stack
- TSN down to the edge

Summary

- The goal of low-complexity Ethernet is to reduce the power, area, and cost of Ethernet
 - It is a concept to bring Ethernet to resource constrained devices that may not even have a MAC
- Device software has the biggest impact on complexity
 - Software footprint directly affects memory size both Flash and RAM
 - The number and type of protocols directly affects processor selection
- Device hardware can be architected to help software manage complexity
 - Advanced MACs can offload software by providing more layer 2 processing
 - MAC / Processor Interface can be simplified from traditional MII
- Reallocating the MAC layer from the processor into the PHY creates the opportunity for the simplest processors to connect to Ethernet networks
- By using techniques previously identified (by Xu and Brooks), EtherNet/IP can be scaled and placed on top of the concept of low-complexity Ethernet

THANK YOU

