EtherNet/IP™ to the Edge – A Concept for "Low-complexity Ethernet”

Tom Weingartner
Analog Devices, Inc.

Dave Alsup
Analog Device, Inc.

February 22, 2017
Discussion Topics

- Why isn’t Ethernet at the Edge Today?
- Architecture of an Ethernet Node
- Scaling an Ethernet Node
- Example of a Low-complexity Ethernet Node
- Future Directions
- Conclusion
Drive down the size, cost, and power of Ethernet, so simple devices talk directly with a controller.

Current Technology

- Enterprise
- Control
- Sensor / Actuator

Future with Low-complexity Ethernet

- Enterprise
- Control
- Field
- Actuator / Sensor

- Twisted Pair
- Distance (1km)
- Power
- Intrinsically Safe

Ethernet in Automation
Automation Architecture vs. Ethernet Complexity

Automation Architecture

- **Control**
- **Field**
- **Sensor / Actuator**

Processing Power

- x86
- or
- ARM A15

Ethernet Complexity

- Large number of connections
- Handle all messages
- Multiple cycle times
- Topology Management

- Few connections
- Device specific messages
- 1 or 2 cycle times
- Topology participant

Application Complexity

- ARM A7 to ARM M3
- ARM M0 or None

- 1 connection
- Small messages
- Simple data refresh
- Topology participant
• MAC filter logic of limited use
• Process most Ethernet frames
• Protocols increase Flash / RAM

• Numerous high-speed pins
• Special layout considerations
• Hard to provide isolation
Mapping Ethernet to Node Architecture

- Device application
- TCP/IP Stack
- Industrial Ethernet Stack
- PTP stack (maybe)
Scaling An Ethernet Node for Low-complexity

- Target small-scale single-chip processing solution by reducing
 - Processor speed / performance
 - Flash memory size
 - RAM size
- Reduce interconnect complexity from processor to network interface
- Reduce pin-count and complexity of network interface
Advanced MAC / Switch

• Instead of general filtering…
 ➢ perform intelligent / dynamic frame filtering and buffering before any frames are communicated to the processor

• Manage priorities among protocols
 – i.e. this ARP request isn’t for me, don’t send on
 – i.e. this ARP request in lower priority than incoming EtherNet/IP implicit message, send EtherNet/IP message first

• Manage surges in frame receipt due to alignment of various protocols

• **Benefits**
 – Reduces overall buffer space
 – Retain frames based on priority, application state, and processor load conditions
 – Substantially reduces the amount of data transferred to and processed by the processor
Example Device with Low-complexity Ethernet

4..20 mA with HART

- **Connections for:**
 - 2-wire Potentiometer / RTD
 - 3-wire Potentiometer / RTD
 - 4-wire Potentiometer / RTD
 - Voltage Measurement
 - Thermocouple

- **4..20 mA**
 - Process Variable (Temperature)

- **HART**
 - Calibration
 - Alarms
 - Set Points

- **Supply Power:** 12..42V
- **Power Consumption:** < 1.5W
- **Cable length:** up to 3km
- **Bandwidth:** 1200 Baud

Ethernet with future 2-wire

- **Connections for:**
 - 2-wire Potentiometer / RTD
 - 3-wire Potentiometer / RTD
 - 4-wire Potentiometer / RTD
 - Voltage Measurement
 - Thermocouple

- **Ethernet**
 - Process Variable (Temperature)

- **Supplementary Information:**
 - Calibration
 - Alarms
 - Set Points

- **Supply Power:** 12..42V
- **Power Consumption:** < 1.5W
- **Cable length:** 200m..1km
- **Bandwidth:** 100Mb/s..10Mb/s
Architecture using current 4..20mA

Architecture using Low-complexity Ethernet concept

Low-complexity Ethernet concept provides similar:

1. Processing power
2. Memory footprint
3. Total power budget
4. Simple isolation scheme
Future Directions

- Reducing the footprint of Ethernet opens the door to other possibilities
- PHY-related
 - Ethernet over twisted-pair
 - Adding power
 - Adding Intrinsic safety
 ➢ Will the IEEE 10SPE effort get us these?
- Processor-related
 - Nano-stacks
 - IP-to-the-Edge versus Ethernet-to-the-Edge
 • i.e. stack versus no stack
- TSN down to the edge
The goal of low-complexity Ethernet is to reduce the power, area, and cost of Ethernet. It is a concept to bring Ethernet to resource constrained devices that may not even have a MAC.

Device software has the biggest impact on complexity:
- Software footprint directly affects memory size – both Flash and RAM
- The number and type of protocols directly affects processor selection

Device hardware can be architected to help software manage complexity:
- Advanced MACs can offload software by providing more layer 2 processing
- MAC / Processor Interface can be simplified from traditional MII

Reallocating the MAC layer from the processor into the PHY creates the opportunity for the simplest processors to connect to Ethernet networks.

By using techniques previously identified (by Xu and Brooks), EtherNet/IP can be scaled and placed on top of the concept of low-complexity Ethernet.