EtherNet/IP[®]

Quick Start for Vendors

Before We Begin

- Introductions
- All attendees are automatically muted with no video connection as a default.
- Please use the Q&A to ask questions, not the chat. We will address questions as they come in.
- At the end if there is time, we will take questions verbally from the attendees. We will advise if and when there is time for you to "raise your hand" if you have a question.
- Please complete the 4 question post session survey. The survey will launch when you close out of the webinar.

Review - Yesterday We Covered:

Technical Overview of CIP

- Device Profiles:
 - Object Model
 - I/O Data Format
 - Configuration Format
- Class, Instance
- Attributes, Services, Behaviors
- Implicit & Explicit Messaging
- Configuration

Review - Yesterday We Covered:

Technical Overview of EtherNet/IP

- EtherNet/IP Encapsulation
- Connected/Unconnected Explicit Messaging
- Implicit Messaging
- Connection Concepts:
 - Originator, Target
 - Point-to-point, Multicast
- Connection Types:
 - Exclusive Owner
 - Input Only
 - Listen Only

Getting Started with EtherNet/IP™ Development

Matthew Frazer ODVA ODVA

The EtherNet/IP Development Process

Terms of Usage Requirements: Vendor ID, Specifications, Testing

Terms of Usage (TOU) and Vendor ID (VID)

Complete the TOU

	TERMS OF USAGE AGREEMENT
DOW'S Terms of Dasge Agreement is a nouncational document cense agreement between ODVA and each entity that is licen greement defines your responsibilities and rights in connectio ou are licensed to use are those listed and selected by you in	It befind the large and vorant community or adopters, it includes a sed by ODVA to make and sell products using ODVA technologies. This n with your use of the licensed technologies. ODVA technologies that Section 2 of this Agreement.
ENTITY INFORMATION	
. Name	
USINESS NAME PROPOSED TO BE DISPLAYED IN THE ODVA R ISTS OF ODVA	OSTER OF LICENSED VENDORS AT WWW.ODVA.ORG AND OTHER PUBLIC
RIMARY WEB SITE ADDRESS FOR THIS BUSINESS	URL OF BUSINESS MOST CLOSELY RELATED TO
8. Corporate Data	ODVA TECHNOLOGIES
EGAL NAME OF ENTITY SUBMITTING THIS AGREEMENT	
TREET APPRESS	CITY
TREET AUDRESS	GIT
TATE/PROVINCE ZIP/POST CODE	COUNTRY
ELEPHONE FAX	WEB SITE
UTHORIZED REPRESENTATIVE (SIGNATORY ON THIS FORM)	EMAIL ADDRESS
DOVA TECHNOLOGY TO WHICH ENTITY SEEKS TO BE	COME A "LICENSED VENDOR"
DDVA, including all supplements)	for this being submitted (each of which is a Final Specification of
lowever, pursuant to Section 5.6 below, this TOU Agreement shall	also apply to such pre-existing technology.)
DeviceNet (includes CIP along with CIP distinctive service of CIP)	s CIP Energy, CIP Motion and CIP Sync, plus the DeviceNet Adaptation
EtherNet/IP (includes CIP along with CIP distinctive servic EtherNet/IP Adaptation of CIP)	es CIP Energy, CIP Motion, CIP Security and CIP Sync, plus the
CompoNet (includes CIP along with CIP distinctive service	s CIP Energy and CIP Sync, plus the CompoNet Adaptation of CIP)
ControlNet (includes CIP along with CIP distinctive service	s CIP Energy and CIP Sync, plus the ControlNet Adaptation of CIP)
CIP Safety on DeviceNet (must already have or obtain a li	cense for DeviceNet from ODVA)
CIP Safety on EtherNet/IP (must already have or obtain a	license for EtherNet/IP from ODVA)
CIP Safety on SERCOS III (must already have or obtain a	license for SERCOS III from Sercos International)
Common Industrial Cloud Interface (includes Application P	rogram Interface and Gateway software for Common Industrial Cloud s must also have or obtain a license for ODVA network interface

Order Vendor ID & Specifications

	DeviceNet		
	EtherNet/IP		
	CompoNet		
	ControlNet		
Submit Order			

Available on: www.odva.org/technologystandards/document-library/

PUB00174R26, EtherNet/IP Quick Start for Vendors, © 2021 ODVA

TOU Highlights: VID

- Maintain Vendor ID for each licensed technology (EtherNet/IP)
- Your company's VID is:
 - Unique
 - Same for all technologies
 - What identifies you as authorized vendor of EtherNet/IP Devices

TOU Highlights: Specifications

Maintain subscription to The EtherNet/IP Specification

TOU Highlights: Declaration of Conformity (DOC)

- DOCs obtained via ODVA conformance testing
- Vendor-independent assurance of compliance
- Authorized Test Service Providers (TSPs) conduct testing in North America, Europe, China, and Japan
- ODVA CONFORMANT products:
 - Have passed conformance testing at a TSP
 - Hold a valid DOC

TOU Highlights: Trademarks

EtherNet/IP

The EtherNet/IP™ network trademark

The ODVA CONFORMANT[™] certification trademark (product holds valid DOC)

• Non-conformance = stop selling, advertising the product

Specifications: The CIP Networks Library

- Volume 1: Common Industrial Protocol (CIP™)
- Volume 2: EtherNet/IP[™] Adaptation of CIP
- Volume 3: DeviceNet® Adaptation of CIP
- Volume 4: ControlNet
 Adaptation of CIP
- Volume 5: CIP Safety™
- Volume 6: CompoNet
 Adaptation of CIP
- Volume 7a: Integration of Modbus Devices into CIP
- Volume 7b: Integration of HART Devices into CIP
- Volume 8: CIP Security™
- Volume 9: CIP Motion™

What's in the Spec?

- Documentation of the Common Industrial Protocol and its specific network adaptations.
- NOT a "how-to" guide for developing an EtherNet/IP product

How Specs are Organized

- Each contains 10 chapters
- 4+ appendices
- Network adaption volumes:
 - Expand the scope of CIP (Vol. 1)
 - -Narrow the scope of CIP

What to Read in Volume 1 CIP

Tips for Chapter 3 of Volume 1 CIP

- Sections 2 & 3:
 - What goes on inside the device, independent of what happens with externally visible objects
- Connection Object
 - Not mandatory and typically not implemented
 - Transport and Trigger definitions do apply to EtherNet/IP, so read about Class 1 and Class 3 transports
- Connection Manager Object
 - Required for every EtherNet/IP device
 - Connection Messaging requires services Forward_Open, Forward Close
 - Unconnected_Send required only for routing / originating devices that send messages across routers

Tips for Appendix C of Volume 1 CIP

- Data Types
- Segment Encoding: powerful addressing method
 - Used in Forward_Open, Unconnected_Send messages
 - Used in EDSs
 - Key segment types to know:
 - Logical segments (class/instance/attribute and connection point addressing, keying)
 - Port segments (path description)
 - Symbolic segments
 - Electronic key segments (device identification)
 - Data segments (to send config data)

What to Read in Volume 2 EtherNet/IP Adaptation

PUB00174R26, EtherNet/IP Quick Start for Vendors, © 2021 ODVA

Appx. E
 EtherNet/IP QuickConnect (if building device that must power up and get online quickly)
 After the product is functional, read these sections to understand how to create your EDS file

Vol. 1, Ch. 7 & Vol. 2, Ch. 7

PUB00174R26, EtherNet/IP Quick Start for Vendors, © 2021 ODVA

EtherNet/IP™ Functional Requirements

Chatrapathi GV Utthunga

Defining Your Product Requirements

Defining Application Data within Device Objects

- Related data grouped together within single object
- Define data using Application Object or Vendor-specific Object
- Access data through explicit or implicit messages
- I/O Adapter class devices:
 - Use Assembly Object to define I/O data

Assembly Object

- Assembles data (attributes) from many places into a single object
 - Identity Objects, Application Dev
 Objects, Vendor-specific, or
 Messaging
 - Aggregates data associated with I/O connections
 - Sent/received over single connection
 - Allows Vendor-specific assemblies

Example of an Assembly Object

Choosing the Best Device Profile

- Best fit for product functionality needed
- Best fit for intended application of product:

Digital I/O module	 General Purpose Discrete I/O Device profile
I/O Scanner	 Communications Adapter profile
No other CIP Network profile is application- appropriate?	 Use the Generic or Vendor-Specific profile

Electronic Data Sheet (EDS)

- Text file that allows a tool to learn about device's
 - Structure and meaning of I/O data
 - Available I/O data transfer types
 - Network accessible application configuration parameters
 - Modular constructs (for complex devices)
 - Network capacity capabilities
 - Optional supported attributes/services
 - Internalization strings for parameters
 - Identity

Basic Contents of an EDS

- Contains structure of I/O
- How to get access
- Distinguishes this product from all others
 - Tailored to individual product features
 - Describes multiple network interfaces to multiple CIP Networks
 - Identifies your product as an EtherNet/IP device, etc.

EDS [File] and [Device]

• [File] is for EDS revision control

 [Device] matches a device with the EDS file

EDS [Connection Manager]

 Contains entries describing all available connections

EDS [Params]

 Provide data entry and interpretation assistance

[Params]	ſ	
Param1 =		Data type, size,
Ο,	\$ reserved, shall equal 0	narameter name aid
, ,	\$ Link Path Size, Link Path	parameter name alu
0x0000,	\$ Descriptor	configuration
0xC8,	\$ Data Type —	
4,	\$ Data Size in bytes	Short help string can
"RPI",	\$ name	
"",	\$ units	provide basic
"",	\$ help string	assistance
5000,50000,10000,	\$ min, max, default data values 🔍 🗌	
	\$ mult, div, base, offset scaling \bigwedge	
	<pre>\$ mult, div, base, offset links</pre>	valid range for value
;	\$ decimal places	includes min. max. and
Param2 =		default
0,	\$ reserved, shall equal 0 $\$	Uerauli
	\$ Link Path Size, Link Path	
0x0200,	\$ Descriptor	Scaling factors can be
0xC7,	\$ Data Type	aposified and linked to
2,	\$ Data Size in bytes	specified and liftked to
"Input Data Size",	\$ name	other ParamN entries
"",	\$ units	
"",	\$ help string	
2,6,6,	\$ min, max, default data values	
	\$ mult, div, base, offset scaling	
////	\$ mult, div, base, offset links	
;	\$ decimal places	

ODVA.

EDS [Enum]

 Enumerate parameters to simplify data value interpretation

[Params]	
Param7 =	
0, \$ reserved,	shall equal 0
,"", \$ Link Path	Size, Link Path (Class 7,
Instance 7	
0x0014, \$ Descriptor	
0xD2, \$ Data Type	
2, \$ Data Size	in bytes
"Status", \$ name	
"", \$ units	
"Indicates current run status",	<pre>\$ help string</pre>
0,8,0, \$ min, max,	default data values
,,,, \$ mult, div,	base, offset scaling
,,,, \$ mult, div,	base, offset links
; \$ decimal pl	aces
-	
Enum7 = 1, "Running/Stopped",	Enumerate, each valid value
2, "Forward/Reverse",	
4, "Torque Limit Exceeded"	for this parameter. Names are
8, "Overspeed Detected"	displayed (instead of the raw
	number) when param is
	accessed
EDS [Groups]

 Create logically related parameter groupings

```
[Params]

...

[Groups]

Group1 = "Setup", 3, 1,2,6; $ This group has Params 1, 2 and

Group2 = "Monitor", 3, 3,4,10; $ This one has Params 3, 4 and

10

Group3 = "Maintenance", 6, 5,6,7,8,9,10;

Each GroupN keyword contains a Group Name,

Number of Members, and a list of ParamN entry

numbers that comprise the group
```

EDS [Assembly]

 Gives useful description of Assembly contents (usually input and output data for I/O connections)

Mandatory

EDS [Capacity]

- Specifies how many connections and how much I/O traffic a device can tolerate
- Required to pass interoperability testing

[Capacity]	
TSpec1 = TxRx, 2, 5000;	\$ packets per sec @ 2 bytes
TSpec2 = TxRx, 128, 4700;	\$ packets per sec @ 128 bytes
TSpec3 = TxRx, 256, 4200;	\$ packets per sec @ 256 bytes
TSpec4 = TxRx, 508, 3400;	\$ packets per sec @ 508 bytes
ConnOverhead = .002;	\$ connection overhead
MaxClPConnections = 128;	\$ no more than 128 total
connections	
MaxConsumersPerMCast = 64;	\$ 64 consumers per multicast
connection	

Using the EDS [Capacity] values, a tool can determine whether a given network will allow stable operation

EDS Summary

- Storage using the File Object:
 - Tightly links EDS to the device
 - Compression algorithm detailed in the spec
 - Customers like this approach!
- Call to action: develop good EDS – it provides BIG payback

EDS SECTIONS THAT DEAL WITH MODULARITY (RACK-BASED PRODUCTS)

- Ports
- Network Specific Sections
- Internalization

Recommended Tool: EZ-EDS

- Create and edit EDS files
- Free on odva.org

EtherNet/IP Functionality Considerations

- What other devices must my device interoperate with?
- How do I ensure interoperability?
- What capabilities and performance should my device have to allow users to create a functional system?
- Should I implement an embedded switch and DLR?

EtherNet/IP Functionality Recommendations

- Promote EtherNet/IP device interoperability through the definition of product functional requirements
- Defined in a set of two EtherNet/IP interoperability documents.
 - Validated by ODVA
 - Updated in ongoing PlugFest interoperability events
 - Published on odva.org

ODVA EtherNet/IP Member Roundtables

- Promote:
 - Adoption
 - Technical leadership
 - Exploratory discussion
 - Collaboration of ODVA and industry peers
 - Ease of use of EtherNet/IP technology
 - Interoperability through PlugFest

Roundtable Purpose

OD'/A

Share	 Mission-relevant, real-world experiences in engineering design and field deployment of EtherNet/IP products
Enhance	 Best practices in making an EtherNet/IP product to improve interoperability and ease of use
Identify	 Technology barriers for user adoption
Develop	 Recommendations on how ODVA could address barriers to improve interoperability and ease of use

Required vs. Recommended Functionality

- Interoperability test is an *advisory* test administered at multivendor PlugFest events
- Elements of *advisory* test *will* become part of standard conformance test

Suggestions for Vendors

- Include interoperability recommendations in your functional specification
 - Adds value to your product
 - Reduces support needed later
 - Better end-user experience implementing your product in EtherNet/IP systems
- Attend a PlugFest!

Defining Device Performance

- # of connections and I/O traffic a device should allow (without overloading)
- RPI rates, total # of connections, connection types and sizes all interrelate and affect performance
- Publish capability in [Capacity] section of EDS

Defining Performance Variables

- Maximum # of CIP connections and connection types

 Follow Recommended Functionality for EtherNet/IP Devices document
- Maximum throughput (application dependent)
 - Minimum allowable RPI (minimum 10ms RPI*)
 - Maximum packets/second throughput with minimum data size
 - Maximum packets/second throughput with maximum data size
- Consider robustness testing
 - Measures ability of device to sustain normal communications in presence of other multicast or broadcast traffic

*If unsure, consider minimum 10ms RPI, but do not support RPI rate faster than your product application needs to allow the best use of your product's internal resources

Additional Functional Considerations

Additional Functional Considerations

Co-existence with other TCP/IP applications • Modbus/TCP

- HTTP Hypertext Transfer Protocol
- FTP File Transfer Protocol
- SMTP Simple Mail Transfer Protocol
- OPC Open Platform Communications

Additional capabilities of TCP/IP applications

- Browser-based configuration, monitoring, and diagnostics
- Email notification on alarms or events
- Software update via network

Industrial Security Considerations

- The use of network technologies grew out of the desire to share information between systems
 - Initially, they were proprietary, and access was limited
 - Today they are based on widely used technologies
- The value of connectivity is obvious, but there are risks
 - Theft of intellectual property
 - Tampering with plant systems
 - Disruption of plant operations
 - Damage to equipment

Introducing CIP Security

- The goal of CIP Security:
 - Improve the defensive capabilities of devices in a defense-in-depth architecture
 - Ultimately, build devices that defend themselves
- Today
 - Provides: Trust Domain, Device Authentication, Integrity and Confidentiality
- Future
 - Provides: User Authentication, Audit and Authorization

ODVA's Role in Security

ODYA

Key Data Flows to Secure

- Scanner to Adapter process data
- Scanner to Adapter configuration
- Scanner to adapter across zones
- SCADA and HMI to Adapter (PLC)
- Scanner to Scanner
- Engineering PC to Adapter, scanner, and HMI for configuration and diagnostics
- Enterprise to Adapter (e.g., Energy Object)
- Configuration tool to network
 infrastructure
- Local Machine Remote Access
- Enterprise remote access

Elements of CIP Security

ODVA

PUB00174R26, EtherNet/IP Quick Start for Vendors, © 2021 ODVA

Hardening Considerations

Protection Mode	 Attribute of the Identity Object Rejects disruptive CIP services when attribute is set
Network Robustness	 Open port scanning (NMAP) Vulnerability testing (Nessus) Resource starvation eg: storm handling (Achilles) Protocol robustness eg: fuzzing (Achilles)
System Level Resources	 Securing EtherNet/IP Networks guide ODVA Conformance testing Proprietary, vendor-specific usability & functional testing

CIP Security Mechanisms: Best Practices

- Utilize proven-in-use, open security standards wherever possible
- Provide security options and/or scalable properties compatible with different risk profiles and device capabilities (e.g., apply encryption for confidentiality if required)
- Maximize compatibility with existing network infrastructure (switches, routers, firewalls, etc.)
- Require no custom cryptography to maximize security and minimize any possible import and export restrictions
- Implementations should be available as both commercial and open-source supporting many different OS platforms (embedded, PC, Linux, etc.) where possible

OD'/A

CIP Security Technologies

- X.509v3 Digital Certificates provide cryptographically secure device identities
 - Supports either default certificate (vendor or self-signed) or Local PKI (Push or Pull models)
- TLS (Transport Layer Security) and DTLS (Datagram Transport Layer Security) cryptographic protocols are used to provide secure transport of EtherNet/IP traffic
- Hashes or HMAC (keyed-Hash Message Authentication Code) provides data integrity and message authentication to EtherNet/IP traffic
- Encryption prevents reading or viewing of EtherNet/IP data by unauthorized parties

TLS and DTLS Security Attributes

- Authentication of the endpoints ensuring that the target and originator are both trusted entities
 - End point authentication is accomplished using X.509 certificates or pre-shared keys
- Message integrity/authentication ensures that the message was sent by the trusted endpoint and was not modified in transit
 - Message integrity and authentication is accomplished via TLS message authentication code (HMAC)
- Message encryption optional capability to encrypt the communications
 - Provided by the encryption algorithm that is negotiated via the TLS handshake.

EtherNet/IP Security

- UCMM and Connected Explicit (transport Class 3) -EtherNet/IP over TLS (Port 2221/TCP)
- Implicit (transport Class 0/1) EtherNet/IP over DTLS (Port 2221/UDP)
 - Forward_Open and Forward_Close moved to DTLS/UDP
- Identity and Integrity of communications in all use cases – Confidentiality of communications optional.
- Authorization based on possession of pre-shared key or trusted certificate

CIP Energy Overview

CIP Network (EtherNet/IP)

+ CIP Energy Specification

- Awareness of energy usage
- Efficient energy consumption
- Transacting energy for best results

Energy Elements

PROFILES	SWITCH PROFILE	POWER SUPPLY PROFILE	MANAGED POWER SUPPLY PROFILE	POWER MONITOR PROFILE	
ENERGY SUPERVISOR OBJECTS AND SERVICES		ENERGY A	ENERGY AWARENESS OBJECTS AND SERVICES		

DATA MANAGEMENT SERVICES (Explicit and I/O Messages)

ETHERNET/IP PHYSICAL LAYER

PUB00174R26, EtherNet/IP Quick Start for Vendors, © 2021 ODVA

CIP Energy Objects and Services

Objects

- ✓Base energy object
- ✓ Electrical energy object
- ✓Non-electrical energy object
- ✓Power management object
- ✓Power curtailment object

Services

- ✓Pause
- ✓Sleep
- ✓Curtailment

CIP Safety Overview

- Allows safety devices to coexist with standard control devices on same CIP Network
- IEC 61508 certification for safety networks
- Integrity of safety control loop
- ODVA offers a one-day CIP Safety seminar

- Provides time synchronization services
- Uses IEEE 1588 standard Precision Time Protocol (PTP)
- Syncs devices to within hundreds of nanoseconds of accuracy
- Allows distributed control components to share a common notion of time

CIP Motion Overview

CIP Motion Specification

- Bandwidth and power
 - 100Mbps real-time data transfer via EtherNet/IP
 - Full duplex managed switches
 - Motion packets prioritized
- Common Interface
 - Device profiles support wide range of drive types
 - Control types: position, control, velocity, torque, feedback-only

PUB00174R26, EtherNet/IP Quick Start for Vendors, © 2021 ODVA
CIP Motion Benefits

- Single network solution for control + motion
- High-performance motion control via standard Ethernet
- Flexible communications
- Motion device profile = superior drive interoperability
- Accurate time synchronization via CIP Sync

Choosing an Implementation Approach

Jamie Gallant Hilscher

EtherNet/IP Implementation Options

- Develop your own hardware and software
- Purchase part of implementation from an enabler product vendor
- Purchase entire implementation from an enabler product vendor

Disclaimer: This section is most useful for those in the early stages of development.

EtherNet/IP Enabling Technologies

- Hardware
 - -External gateway device (e.g., serial to EtherNet/IP)
 - -Embedded board with complete EtherNet/IP implementation
 - Microprocessor/FPGA with integrated EtherNet/IP protocol stack implementation
 - -Complete hardware implementation (internal or outsourced)
- Software
 - -Integrate an EtherNet/IP stack solution
 - -Develop your own EtherNet/IP stack
 - -Complete outsourced software implementation

•Not intended to be a complete list

External Gateway Device

Self contained gateway with EtherNet/IP to serial or other network protocols

Advantages	Disadvantages	Best Suited to
 Quickest and easiest path to implementation No product development required Conformance certified 	 Not an integrated solution; software tools see gateway not actual device User must configure gateway May have limited EtherNet/IP communications options (size, rate, type) May have low throughput performance 	 Low volume or situations needing a fast solution Connecting legacy devices or EtherNet/IP backbone to other networks

Embedded Board

ODVA.

Embedded boards/modules with EtherNet/IP implementation

Advantages	Disadvantages	Best Suited to
 Complete EtherNet/IP hardware and software implementation 	 Cost of embedded board may be decision factor Performance may be an issue in the most demanding applications, such as motion control 	 Typically low to mid volume solution, high volume solutions are available When multiple fieldbus connectivity is needed
 Integrated solution; vendor- specific customization Fast time to market 		
 Conformance tested embedded technology (finished product will still require conformance testing) 		

Microprocessor with Integrated EtherNet/IP

Chip-level solution with embedded EtherNet/IP

Α	dvantages	Disadvantages	Best Suited to
•	EtherNet/IP stack already integrated	 Hardware development to integrate with application platform Cost can be an issue versus off-the-shelf microprocessor 	 Mid to high volume solution when vendor does not want to do complete hardware development and EtherNet/IP stack integration
•	Can be more easily customized for vendor-		
	specific application		
•	Some solutions allow application software to run on same microprocessor		
•	Performance can be good (depending on hardware)		

Complete Hardware Implementation

In-house or outsourced

Advantages	Disadvantages	Best Suited to
 Can choose specific microprocessor, components, OS, TCP/IP stack and EtherNet/IP stack suited for product application 	 Most work and development expense to implement Requires hardware, embedded design and Ethernet development 	 High volume applications or when product cost is critical
 Can achieve high performance 	expertise	
 More control over cost 		

EtherNet/IP Stack Options for Developers

- Implement an EtherNet/IP stack yourself
 - Provides design control for special requirements
 - Requires more expertise; will need extensive testing
- Purchase a commercial EtherNet/IP stack
 - -Generally a more robust and complete stack
 - Support, maintenance and consulting offered
- Purchase a hardware solution with embedded stack
 - Will need to integrate with your application

Integrate EtherNet/IP Stack

Onto existing or new hardware platform

Advantages	Disadvantages	Best Suited to
 Can use a proven EtherNet/IP stack, no need to develop a stack 	 Still may need to select and integrate with a TCP/IP stack 	 Integration of EtherNet/IP onto existing Ethernet capable hardware
 Ability to choose a stack that meets your product application needs 	 Still may need to develop hardware platform Might have large RAM/ROM requirements not tailored for the specific application 	 When vendor wants to develop hardware, but not develop an EtherNet/IP stack

Develop Your Own EtherNet/IP Stack

From specification or example code

Advantages	Disadvantages	Best Suited to
 Ability to implement specific features needed for product application More control over performance, quality and maintenance More control over 	 Can be significant work to develop a full-featured stack Likely to have errors in initial versions Substantially more testing pooded 	 Simple explicit message clients and servers Vendors with significant CIP and EtherNet/IP expertise Larger vendors who will reuse the stack across multiple products
RAM/ROM footprints	neeueu	
• No licensing lees to a stack vendor		

EtherNet/IP Stack Considerations

- When purchasing ...
 - Ensure stack has features you require for your application
 - Ensure stack passes most recent version of EtherNet/IP conformance test
 - Ensure stack supports interoperability recommendations and passes
 PlugFest interoperability testing
 - Always get source code
 - Stacks are generally optimized for platform portability; ask how the stack can be optimized for performance
 - Ask for RAM/ROM footprints to make sure it fit your needs/limits
 - Ask for performance data; there are no benchmarks standards for EtherNet/IP stacks

Make vs. Buy Considerations

- How do you decide which implementation approach is most suitable?
 - Are your EtherNet/IP functional requirements general in nature or very specialized to your product's application
 - What is your time-to-market requirement?
 - What is your development budget?
 - What is your product cost target?
 - Do you have the relevant background and experience?
 - Hardware development
 - Ethernet communications
 - TCP/IP protocol suite
 - Embedded device development
 - CIP and EtherNet/IP knowledge
 - Do you have the resources to support and maintain the product?

Make vs. Buy Considerations

Development Time & Cost

PUB00174R26, EtherNet/IP Quick Start for Vendors, © 2021 ODVA

Enabler Product Selection Considerations

- Product must meet your cost and functional requirements
- Product should have passed conformance testing or is being used in a product that has passed conformance testing
- Vendor must have a proven field track record
- Product should have passed interoperability testing
- Vendor should be an ODVA Member and have made a commitment to supporting EtherNet/IP technology
 - Significant experience with CIP and EtherNet/IP
 - Participates in SIGs, Roundtables or seminars
 - Keeps the product current to the specification
 - Can assist you with end-user product support

EtherNet/IP Enabling Technologies

- Check the ODVA Marketplace online at <u>marketplace.odva.org</u> for EtherNet/IP enabling technology providers and products:
 - Developer training
 - Developer services
 - Development and testing tools
 - Embedded interface boards
 - Chip level solutions
 - I/O Adapter stack source code
 - I/O Scanner stack source code
 - Gateways
 - PCI cards
 - IP67 EtherNet/IP-compliant connectors

Thank you! Next session:

• EtherNet/IP Quick Start Session 3: Product Design and Testing: Tomorrow at 8:00 am – 10:00 am US Eastern

