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The Common Industrial Protocol (CIP™)  
and the Family of CIP Networks

Preface

Founded in 1995, ODVA (www.odva.org) is a global association whose members comprise the world’s leading 
automation companies. Combined with the support of its members, ODVA’s mission is to advance open,  
interoperable information and communication technologies in industrial automation. The basis of the member-
ship community is its primary common interest in developing standards and promoting adoption of the Common 
Industrial Protocol (CIP™), ODVA’s media independent network protocol, and the network adaptations of CIP – 
EtherNet/IP™, DeviceNet™, CompoNet™ and ControlNet™. ODVA manages these technologies, and develops 
and distributes the specifications for these four networks in a common structure to help ensure consistency and 
accuracy. The following diagram illustrates the organization of the library of four networks.
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Organization of the CIP Networks Specifications
This common structure presents CIP in one volume with a separate volume for each network adaptation of CIP. 
The specifications for the CIP Networks are typically three-volume sets, structured as shown below and as of 
April 2015.

Chapters 2 of this book provides an overview of the Common Industrial Protocol (CIP). Chapter 3 analyzes 
the network adaptations of CIP by network, and Chapters 4 and 5 detail the benefits of CIP and the powerful 
extensions to it, including extensions for synchronization, motion, and functional safety. In conclusion. Chapter 6 
outlines the ODVA Conformance Test process, and Chapters 7 through 11 of this book contain reference mate-
rial (literature references, abbreviations and terminology).

Specification Enhancement Process
The specifications for CIP Networks are continually being 
enhanced to meet the increasing needs of users for 
features and functionality. ODVA uses a Specification En-
hancement Process in order to ensure open and stable 
specifications for all CIP Networks. This process is ongo-
ing throughout the year for each CIP Network Specifica-
tion as shown in the figure below. New editions of each 
ODVA specification are published on a periodic basis. 
In recent years, the CIP Networks Library subscriptions 
have been updated twice annually.

	
  

Member Review and 
Comment Period 

Conformance Tests 
Updated 

New Specification Edition 
Published 

Specification Enhancements 
Integrated in New Revisions of 

Publications 

Technical Review Board Reviews 
and Approves Specification 

Enhancements 

Members Develop Specification 
Enhancements in Special Interest 

Groups (SIGs) 

The EtherNet/IP Specification consists of:
	 Volume 1: Common Industrial Protocol (CIP)
	 Volume 2: EtherNet/IP Adaptation of CIP
	 Volume 7: �Integration of Modbus Devices into  

the CIP Architecture

The DeviceNet Specification consists of:
	 Volume 1: Common Industrial Protocol (CIP)
	 Volume 3: DeviceNet Adaptation of CIP
	 Volume 7: �Integration of Modbus Devices into the  

CIP Architecture

The ControlNet Specification consists of:
	 Volume 1: Common Industrial Protocol (CIP)
	 Volume 4: ControlNet Adaptation of CIP
	 Volume 7: �Integration of Modbus Devices into the  

CIP Architecture

The CIP Safety™ Specification is distributed  
in a single volume:
	 Volume 5: CIP Safety 

The CompoNet Specification consists of:
	 Volume 1: Common Industrial Protocol (CIP) 
	 Volume 6: CompoNet Adaptation of CIP
	� Volume 7: �Integration of Modbus Devices into the  

CIP Architecture
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1 Introduction
Traditionally, networks used in manufacturing enterprises were optimized for performance in specific applications, 
most commonly for control, information and safety. While well suited to the functionality for which they were de-
signed, these networks were not developed with a single, coherent enterprise architecture in mind. Since efficien-
cy, reliability and, ultimately, profitability are generally dependent on having more than one of these capabilities, 
manufacturers were forced to implement several different networks, none of which communicated innately with 
the other. As a result, over the course of time, most manufacturing enterprise network environments have been 
characterized by numerous specialized – and generally incompatible – networks existing in one space.

Today, however, corporate expectations for the manufacturing automation network landscape are dramatically dif-
ferent, thanks to the rapid and ubiquitous adoption of Internet technology. Companies of all sizes, all over the world, 
are trying to find the best ways to connect the entire enterprise. No longer is control of the manufacturing processes 
enough: the new manufacturing mandate is to enable users throughout the company to access manufacturing data 
from any location, at any time, and to integrate this data seamlessly with business information systems.

Due to this adoption and expansion of the use of Internet technologies, a rapidly increasing number of users world-
wide have looked to “open” systems as a way to connect their disparate enterprise processes. However, the de-
vices, programs and processes used at the various layers of the seven-layer Open Systems Interconnection (OSI) 
model have different options, capabilities and standards (or lack of). In general, integrating these networks requires 
extra resources and programming and even then, gaps between the systems often cannot be fully and seamlessly 
bridged. Consequently, without a way to seamlessly integrate a network, users compromise their investments and 
rarely achieve all of the productivity and quality benefits promised by open network technology.

Common application layers are the key to advanced communication and true network integration. ODVA’s 
four best-in-class networks — EtherNet/IP™, DeviceNet™, ControlNet™ and CompoNet™ — all are linked 
by one of industrial automation’s most versatile protocols: the Common Industrial Protocol, known as CIP™. 
CIP encompasses a comprehensive suite of messages and services for the collection of industrial automation 
applications — control, safety, energy, synchronization & motion, information and network management. CIP 
allows users to integrate these applications with enterprise-level Ethernet networks and the Internet. Supported 
by hundreds of vendors around the world and truly media-independent, CIP provides users with a unified com-
munication architecture throughout the industrial enterprise. CIP allows users to benefit today from the many 
advantages of open networks and protects their existing automation investments, while providing an extensible 
and upgradable communication architecture.

With media independence comes choice — the ability to choose the CIP Network best suited for an application. 
As a single, media-independent platform that is shared by a variety of networking technologies, CIP provides 
the interoperability and interchangeability that is essential to open networks and open systems. Four network 
adaptations of CIP are available.

The Common Industrial Protocol (CIP™)  
and the Family of CIP Networks
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EtherNet/IP™: CIP on Ethernet Technology
EtherNet/IP provides users with the network tools to deploy standard Ethernet technology (IEEE 802.3 com-
bined with the TCP/IP Suite) for industrial automation applications while enabling Internet and enterprise con-
nectivity resulting in data anytime and anywhere. EtherNet/IP offers various topology options including a conven-
tional star with standard Ethernet infrastructure devices, or Device Level Ring (DLR) with EtherNet/IP devices so 
enabled. QuickConnect™ functionality allows devices to be reconnected quickly while the network is running by 
using an abbreviated start-up procedure.

DeviceNet™: CIP on CAN Technology
DeviceNet provides users with a cost-effective network to distribute and manage simple devices throughout 
their architecture. DeviceNet uses a trunkline/dropline topology and has DC power available on the network ca-
ble to simplify installations by providing a single connection point for network communications and device power 
up to 24 Vdc, 8 Amps. QuickConnect functionality allows devices to be reconnected quickly while the network 
is running by using an abbreviated start-up procedure.

ControlNet™: CIP on CTDMA Technology
ControlNet provides users with the tools to achieve deterministic, high-speed transport of time-critical I/O and 
peer-to-peer interlocks. ControlNet offers a choice of topology options including trunkline/dropline, star or tree. 
Hardware options are also offered for applications requiring intrinsically safe hardware. Redundant network com-
munication is also available.

CompoNet™: CIP on TDMA Technology
CompoNet enables users to maximize network throughput for applications needing to transmit small packets 
of data quickly between controllers, sensors and actuators. Its simple network connector and cabling scheme 
reduces overall system cost and time.

In addition to these network implementations, ODVA has published extensions to CIP for critical applications.

Functional Safety
Safety application coverage in CIP provides the ability to mix safety devices and standard devices on the same 
network or wire for seamless integration and increased flexibility. CIP Safety™ provides fail-safe communication 
between nodes such as safety I/O blocks, safety interlock switches, safety light curtains and safety PLCs in 
safety applications up to Safety Integrity Level (SIL) 3 according to IEC 61508 standards. CIP Safety has also 
been adopted by Sercos International. A more detailed description of the CIP Safety extension is given in Sec-
tion 5.2.

Synchronization
Synchronization services in CIP provide the increased control coordination needed for control applications 
where absolute time synchronization is vital to achieve real-time synchronization between distributed intelligent 
devices and systems. CIP Sync™ is compliant with IEEE-1588™ standard, and allows synchronization accu-
racy between two devices of better than 100 nanoseconds. Real-time synchronization can be achieved over 
conventional 100Mbps, Ethernet systems with a switch-based architecture. A more detailed description of the 
CIP Sync extension is given in Section 5.1.

Distributed Motion Control 
Motion application coverage in CIP eliminates the need for a purpose-built motion-optimized network by 
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allowing high performance motion control and other devices to be combined on a single EtherNet/IP network. 
This approach results in a modular and streamlined approach to system design and lowers overall system and 
training cost. CIP Motion™ achieves real-time deterministic behavior of multiple axes through a common sense 
of time, allowing for 100 axes to be coordinated with a 1 millisecond network update to all axes. Clock synchro-
nization between axes of better than 100 nanoseconds can be readily achieved, meeting the needs of the most 
demanding motion control applications.

Energy Optimization 
Energy application coverage in CIP provides a family of objects and services for the optimization of energy 
usage (OEU™) and allows scalability of implementation within the device from basic energy awareness to more 
advanced functions for control of energy, aggregation and reporting of energy information or dynamic de-
mand-response. Further, the CIP family of energy objects and services will allow systems to monitor energy us-
age and manage energy for efficient energy consumption through dynamic control of energy state and analysis 
of energy information. Protocol-neutral energy attributes allow for flexibility in the propagation of energy informa-
tion via multiple protocols to facilitate an e-business model such as capturing energy requirements as a line item 
on production bills of material or to implement demand-response mechanisms for dynamic energy transactions.

The universal principles of CIP easily lend themselves to possible future implementations on new physical/data 
link layers. The overall relationship between the four implementations of CIP is shown in Figure 1.

	
  

Figure 1 The Common 
Industrial Protocol and  
its network adaptations
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2 Description of the CIP Networks Library

CIP is a very versatile protocol designed with the automation industry in mind. However, due to its open nature, it 
can be and has been applied to many more areas. The CIP Networks Library contains several volumes:

	 - �Volume 1 deals with the common aspects of CIP that apply to all of the network adaptations. This volume 
contains the common object library and the device profile library, along with a general description of the 
communications model, device configuration and CIP data management. This volume also defines an 
auxiliary power distribution system that is common to all adaptations of CIP.

	 - �Volume 2 is the EtherNet/IP Adaptation of CIP, which describes how CIP is adapted to the Ethernet TCP/
IP and UDP/IP transportation layers. It also contains any extensions to the material in Volume 1 that are 
necessary for EtherNet/IP, such as the optional industrial physical layer and connectors.

	 - �Volume 3 is the DeviceNet Adaptation of CIP, which describes how CIP is adapted to the CAN data link 
layer. It also contains any extensions to the material in Volume 1 that are necessary for DeviceNet.

	 - �Volume 4 is the ControlNet Adaptation of CIP, which describes how CIP is adapted to the ControlNet 
data link layer. It contains a complete description of the ControlNet data link layer and any extensions to 
the material in Volume 1 that are necessary for ControlNet.

	 - �Volume 5 is CIP Safety. It contains the information necessary to implement the CIP Safety protocol on 
CIP Networks.

	 - �Volume 6 is the CompoNet Adaptation of CIP, which describes how CIP is adapted to the CompoNet 
data link layer. It contains a complete description of the CompoNet data link layer and any extensions to 
the material in Volume 1 that are necessary for CompoNet.

	 - �Volume 7 is the Integration of Modbus Devices into the CIP Architecture. This volume describes a stan-
dard for the integration of Modbus devices into the CIP world.

For brevity, this document will use the volume numbers above when referencing the different books in the CIP 
Networks Library.

Specifications for the CIP Networks referenced above, and other documents discussing CIP, are available from 
ODVA at www.odva.org. It is beyond the scope of this book to fully describe each and every detail of CIP, but 
key features of the protocol and the auxiliary power distribution system will be discussed, including:

	 - ��Object modeling;
	 - �Services;
	 - �Messaging protocol;
	 - �Communication objects;
	 - �Object library;

	 - �Device profiles;
	 - �Configuration and electronic data sheets;
	 - �Bridging and routing;
	 - �Data management;
	 - �Auxiliary power distribution system.
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A few terms used throughout this section are described here to make sure they are well understood, further 
terms are described in section 11:

- �Client:
Within a client/server model, the client is the device that sends a request to a server. The client expects a re-
sponse from the server.

- �Server:
Within a client/server model, the server is the device that receives a request from a client. The server is expected 
to give a response to the client.

- �Producer:
Within the producer/consumer model, the producing device places a message on the network for consumption 
by one or several consumers. Generally, the produced message is not directed to a specific consumer.

- �Consumer:
Within the producer/consumer model, the consumer is one of potentially several consuming devices that picks 
up a message placed on the network by a producing device.

- �Producer/Consumer Model:
The producer/consumer model is inherently multicast. Nodes on the network determine if they should consume 
the data in a message based on the connection ID in the packet. CIP uses the producer/consumer model, as 
opposed to the traditional source/destination message addressing scheme (see Figure 2).

- �Explicit Message:
Explicit messages contain addressing and service information that directs the receiving device to perform a 
certain service (action) on a specific part (e.g., an attribute of a given object) of a device.

- �Implicit (I/O) Message:
Implicit messages do not carry address and/or service information; any consuming nodes already know what to 
do with the data based on the connection ID that was assigned when the connection was established. Implicit 
messages are so named because the meaning of the data is “implied” by the connection ID. In most cases they 
are used to transport I/O data.

	
  

 

src dst crc data 

identifier crc data 

Source/Destination 

Producer/Consumer 

Figure 2 Source/ 
Destination vs. Producer/
Consumer Model
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Let’s have a look at the individual elements of CIP:

2.1. Object Modeling 
CIP uses abstract object modeling to describe:

	 - �The suite of available communication services;

	 - �The externally visible behavior of a CIP node;

	 - �A common means by which information within CIP products is accessed and exchanged.

Every CIP node is modeled as a collection of objects. An object provides an abstract representation of a particu-
lar component within a product. Anything not described in object form is not visible through CIP. CIP objects are 
structured into classes, instances and attributes.

A class is a set of objects that all represent the same kind of system component. An object instance is the actu-
al representation of a particular object within a class. Each instance of a class has the same attributes, but also 
has its own particular set of attribute values. As Figure 3 illustrates, multiple object instances within a particular 
class can reside within a CIP node.

In addition to the instance attributes, an object class may also have class attributes. These are attributes that 
describe properties of the whole object class, e.g., how many instances of this particular object exist. Fur-
thermore, both object instances and the class itself exhibit a certain behavior and allow certain services to be 
applied to the attributes, instances or to the whole class. All publicly defined objects that are implemented in 
a device must follow at least the mandatory requirements defined in the various CIP Networks specifications. 
Vendor-specific objects may also be defined with a set of instances, attributes and services according to the re-
quirements of the vendor. However, they need to follow certain rules that are also set forth in the specifications.
The objects and their components are addressed by a uniform addressing scheme consisting of:

	
  

 CIP Node 

Object Instances 
A Class of 
Objects 

Figure 3 A Class of Objects
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- �Node Address:
An integer identification value assigned to each node on a CIP Network. On DeviceNet, ControlNet and Com-
poNet, this is also called a MAC ID (Media Access Control Identifier) and is nothing more than the node number 
of the device. On EtherNet/IP, the node address is the IP address.

- �Class Identifier (Class ID):
An integer identification value assigned to each object class accessible from the network.

- �Instance Identifier (Instance ID):
An integer identification value assigned to an object instance that identifies it among all instances of the same class.

- �Attribute Identifier (Attribute ID):
An integer identification value assigned to a class or instance attribute. 

- �Service Code:
An integer identification value which denotes an action request that can be directed at a particular object in-
stance or object attribute (see Section 2.2).

Object class identifiers are divided into two types of objects: publicly defined objects (ranging from 0x0000 
– 0x0063 and 0x00F0 – 0x02FF) and vendor-specific objects (ranging from 0x0064 – 0x00C7 and 0x0300 – 
0x04FF). All other class identifiers are reserved for future use. In some cases, e.g., within the assembly object 
class, instance identifiers are divided into two types of instances: publicly defined (ranging from 0x0001 – 
0x0063 and 0x00C8 – 0x02FF) and vendor-specific (ranging from 0x0064 – 0x00C7 and 0x0300 – 0x04FF). All 
other instance identifiers are reserved for future use. Attribute identifiers are divided into two types of attributes: 
publicly defined (ranging from 0x0000 – 0x0063, 0x0100 – 0x02FF and 0x0500 – 0x08FF) and vendor-specif-
ic (ranging from 0x0064 – 0x00C7, 0x0300 – 0x04FF and 0x0900 – 0x0CFF). All other attribute identifiers are 
reserved for future use. While vendor-specific objects can be created with a great deal of flexibility, these objects 
must adhere to certain rules specified for CIP, e.g., they can use whatever instance and attribute IDs the devel-
oper wishes, but their class attributes must follow guidelines detailed in Volume 1, Chapter 4 of the CIP Net-
works Library.

Addressing objects and their attributes can be performed with 8 bit, 16 bit or 32 bit addresses. In most cases, 
class and instance addresses are 8 or 16 bit wide, and attribute addresses are only 8 bit wide. 32 bit addresses 
are currently reserved for instance addressing only.

Figure 4 shows an example of this object addressing scheme.
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2.2. Services
Service codes are used to define the action that is requested to take place when an object or parts of an object 
are addressed through explicit messages using the addressing scheme described in Section 2.1. Apart from 
simple read and write functions, a set of CIP services has been defined. These CIP services are common in 
nature, meaning they may be used in all CIP Networks and they are useful for a variety of objects. Furthermore, 
there are object-specific service codes that may have a different meaning for the same code, depending on the 
class of object. Finally, defining vendor-specific services according to the requirements of the product developer 
is possible. While this provides a lot of flexibility, the disadvantage of vendor-specific services is that they may 
not be understood universally. Minimally, vendors provide a description of the public information that their cus-
tomers will need access to in their literature.

2.3. Messaging Protocol
CIP is a connection-based protocol. A CIP connection provides a path between multiple application objects. 
When a connection is established, the transmissions associated with that connection are assigned a connection 
ID, or CID (see Figure 5). If the connection involves a bi-directional exchange, then two CID values are assigned.

The definition and format of the CID is network dependent. For example, the CID for CIP connections over Devi-
ceNet is based on the CAN identifier field.
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Object X 
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Object X 
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Figure 5 Connections and Connection IDs
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Figure 4 Object Addressing Example
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Figure 4 Object Addressing Example

Since most messaging on a CIP Network is done through connections, a process has been defined to establish 
such connections between devices that are not yet connected. This is done through the unconnected message 
manager (UCMM) function, which is responsible for processing unconnected explicit requests and responses.

Establishing a CIP connection is generally accomplished by sending a UCMM Forward_Open service re-
quest message. The Forward_Open is required for all devices that support connections on ControlNet and 
EtherNet/IP. CompoNet uses a different method described in Section 3.4.12. DeviceNet only uses the simplified 
methods described in Sections 3.1.16 and 3.1.17.

A Forward_Open request contains all information required to create a connection between the originator and 
the target device. The resulting data exchange may be unidirectional or bidirectional. In particular, the Forward_
Open request contains information on the following:

	 - �Time-out information for this connection;

	 - �Network CID for the connection from the originator to the target;

	 - �Network CID for the connection from the target to the originator;

	 - �Information about the identity of the originator (vendor ID and serial number);

	 - �Maximum data sizes of the messages on this connection;

	 - �Whether it will be unicast or multicast;

	 - �Trigger mechanisms, e.g., cyclic, change of state (COS);

	 - �Electronic key so the target node can verify that it is the proper type of node (optional);

	 - �Connection path for the application object data in the node that will be produced and consumed;

	 - �Data Segment containing configuration information for the node (optional);

	 - �Routing information if the connection is to span more than one network (optional).

Some networks, like ControlNet, EtherNet/IP and CompoNet, also make use of unconnected explicit messag-
ing. DeviceNet uses unconnected explicit messaging only to establish connections.

All connections on a CIP Network can be categorized as I/O connections or explicit messaging connections.

	 - �I/O connections provide dedicated, special-purpose communication paths between a producing applica-
tion and one or more consuming applications. Application-specific I/O data move through these ports, a 
process that is often referred to as implicit messaging. These messages can be unicast or multicast. These 
connections are also called “implicit” connections because the meaning of the data is implied by the con-
nection ID.
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	 - �Explicit messaging connections provide generic, multi-purpose communication paths between two devic-
es. These connections often are referred to simply as messaging connections. Explicit messages provide 
typical request/response-oriented network communications. These messages are point-to-point. They 
are called “explicit” messages because the data in the request explicitly states what service and object is 
being requested.

The actual data transmitted in CIP I/O messages are the I/O data in an appropriate format; e.g., the data may 
be prefixed by a sequence count value. This sequence count value can be used to distinguish old data from 
new, e.g., if a message has been re-sent as a heartbeat in a COS connection. The two states “Run” or “Idle” 
can be indicated with an I/O message either by prefixing a real-time header, as is primarily used for ControlNet 
and EtherNet/IP, or by sending I/O data (Run) or no I/O data (Idle), a process primarily used for DeviceNet. Com-
poNet uses a bit within the OUT frame or the TRG frame to indicate the states “Run” and “Idle”. “Run” is the 
normal operational state of a device with the outputs under the control of the controlling application, while the 
reaction to receiving an “Idle” event is vendor-specific and application-specific. Typically, this means bringing all 
outputs of the device to a predefined, safe “Idle” state (which usually means “off”), i.e., de-energized.

Explicit messaging requests contain a service code with path information to the desired object within the target 
device followed by data (if any). The associated responses repeat the service code followed by status fields 
followed by data (if any). DeviceNet and CompoNet use a “condensed” format for explicit messages in most 
cases, while ControlNet and EtherNet/IP only use the “full” format.

2.4. Communication Objects
CIP communication objects manage and provide the run-time exchange of messages. Communication objects 
are unique in that they are the focal points for all CIP communication. It therefore makes sense to look at them in 
more detail.

Each communication object contains a link producer part, a link consumer part or both. I/O connections may be 
either producing or consuming or producing and consuming, while explicit messaging connections are always 
producing and consuming.

Figure 6 and Figure 7 show the typical connection arrangement for CIP I/O messaging and CIP explicit messag-
ing. The attribute values in the connection objects define a set of attributes that describe vital parameters of this 
connection. Note that explicit messages are always directed to the message router object.
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The attribute values of a connection object specify whether it is an I/O connection or an explicit messaging con-
nection, the maximum size of the data to be exchanged across this connection and the source and destination 
of the data. Further attributes define the state and behavior of the connection. Particularly important behaviors 
include how messages are triggered (from the application, through change of state (COS), i.e., when data has 
changed, through cyclic events or by network events) and the timing of the connections (time-out associated 
with this connection and predefined action if a time-out occurs). CIP allows multiple connections to coexist in a 
device, although simple devices – e.g., simple DeviceNet or CompoNet slaves – typically will only have one or 
two live connections at any time (only one connection on CompoNet).
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Figure 7 CIP Explicit Messaging Connection	
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2.5. Object Library
The CIP family of protocols contains a large collection of commonly defined objects. The overall set of object 
classes can be subdivided into three types:

	 - �General use; 
	 - �Application specific;
	 - �Network specific.

Objects defined in Volume 1 of the CIP Networks Library are available for use on all network adaptations of CIP. 
Some of these objects may require specific changes or limitations when implemented on some of the network 
adaptations. These exceptions are noted in the network-specific volume. Therefore, to see a complete picture of 
a specific network implementation of an object, refer to Chapter 5 in both the Protocol Adaptation Volume and 
Volume 1.

The following are general use objects (object IDs in brackets):

The following group of objects is application-specific (object IDs in brackets):

- Assembly (0x04)					     - Message Router (0x02)
- Acknowledge Handler (0x2B) 				    - Originator Connection List (0x45)
- Connection (0x05) 					     - Parameter (0x0F)
- Connection Configuration (0xF3) 				    - Parameter Group (0x10)
- Connection Manager (0x06) 				    - Port (0xF4)
- File (0x37) 					     - Register (0x07)
- Identity (0x01) 					     - Selection (0x2E)

- AC/DC Drive (0x2A)
- Analog Group (0x22)
- Analog Input Group (0x20)
- Analog Input Point (0x0A)
- Analog Output Group (0x21)
- Analog Output Point (0x0B)
- Base Energy (0x4E)
- Block Sequencer (0x26)
- Command Block (0x27)
- Control Supervisor (0x29)
- Discrete Group (0x1F)
- Discrete Input Group (0x1D)
- Discrete Output Group (0x1E)
- Discrete Input Point (0x08)
- Discrete Output Point (0x09)
- Electrical Energy (0x4F)
- Event Log (0x41)
- Group (0x12)

- Motion Device Axis (0x42)
- Motor Data (0x28)
- Non-Electrical Energy (0x50)
- Overload (0x2C)
- Position Controller (0x25)
- �Position Controller Supervisor (0x24)
- Position Sensor (0x23)
- Power Curtailment Object (0x5C)
- Power Management Object (0x53)
- Presence Sensing (0x0E)
- S-Analog Actuator (0x32)
- S-Analog Sensor (0x31)
- S-Device Supervisor (0x30)
- S-Gas Calibration (0x34)
- S-Partial Pressure (0x38)
- S-Sensor Calibration (0x40)
- S-Single Stage Controller (0x33)
- �Safety Analog Input Group (0x4A)
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The last group of objects is network-specific (object IDs in brackets):

The general use objects can be found in many different devices, while the application-specific objects are typically 
found only in devices hosting such applications. New objects are added on an ongoing basis by the various ODVA 
Special Interest Groups (SIGs). As mentioned earlier, there are many vendor-specific objects defined by developers 
to satisfy needs that may not be met by the existing open objects contained in the published specifications.

Although this looks like a large number of object types, typical devices implement only a subset of these objects. 
Figure 8 shows the object model of such a typical device.

- Safety Analog Input Point (0x49)
- Safety Dual Channel Feedback Object (0x59)
- Safety Feedback Object (0x5A) 
- �Safety Discrete Input Group (0x3E)
- �Safety Discrete Input Point (0x3D)
- �Safety Discrete Output Group (0x3C)
- �Safety Discrete Output Point (0x3B)
- �Safety Dual Channel Analog Input (0x4B)
- �Safety Dual Channel Output (0x3F)

- Safety Limit Functions Object (0x5B
- Safety Stop Functions Object (0x5A)
- Safety Supervisor (0x39)
- Safety Validator (0x3A)
- Softstart (0x2D)
- Target Connection List (0x4D)
- Time Sync (0x43)
- Trip Point (0x35)

- Base Switch (0x51)
- CompoNet Link (0xF7)
- CompoNet Repeater (0xF8)
- ControlNet (0xF0)
- ControlNet Keeper (0xF1)
- ControlNet Scheduling (0xF2)
- Device Level Ring (DLR) (0x47)
- DeviceNet (0x03)
- Ethernet Link (0xF6)
- Modbus (0x44)

- Modbus Serial Link (0x46)
- Parallel Redundancy Protocol (0x56)
- Power Management (0x53)
- PRP Nodes Table (0x57)
- SERCOS III Link (0x4C)
- SNMP (0x52)
- QoS (0x48)
- RSTP Bridge (0x54)
- RSTP Port (0x55)
- TCP/IP Interface (0xF5)

Figure 8 Typical Device Object Model
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The objects required in a typical device are:

	 - �Either a connection object or a connection manager object;
	 - �An identity object;
	 - �One or several network-specific link objects (depends on network);
	 - �A Message router object (at least its function).

Further objects are added according to the functionality of the device. This enables scalability for each 
implementation so that simple devices, such as proximity sensors, are not burdened with unnecessary 
overhead. Developers typically use publicly defined objects (see above list), but can also create their own 
objects in the vendor-specific areas, e.g., Class ID 100 – 199. However, they are strongly encouraged to 
work with the Special Interest Groups (SIGs) of ODVA to create common definitions for additional objects 
instead of inventing private ones.

Out of the general use objects, several are described in more detail below.

2.5.1. Identity Object (Class ID: 0x01)
The identity object is described in greater detail because, being a relatively simple object, it can serve to illustrate 
the general principles of CIP objects. In addition, every device must have an identity object.

The vast majority of devices support only one instance of the identity object. Thus, typically there are no re-
quirements for any class attributes that describe additional class details, e.g., how many instances exist in the 
device. Only instance attributes are required in most cases. These are as follows:

Mandatory Attributes:

Optional or Conditional Attributes:

- Vendor ID
- Device Type
- Product Code
- Revision

- Status
- Serial Number
- Product Name

- State
- Configuration Consistency Value
- Heartbeat Interval
- Active Language
- Supported Language List
- International Product Name

- Semaphore
- Assigned_Name
- Assigned_Description
- Geographic_Location
- Modbus Identity Info
- Protection Mode
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Let us have a look at these attributes in more detail:

	 - �The Vendor ID attribute identifies the vendor that markets the device. This UINT (Unsigned Integer) value 
(for Data Type descriptions see Section 2.9) is assigned to a specific vendor by ODVA. If a vendor intends 
to build products for more than one CIP Network, the same Vendor ID will generally be assigned for all 
networks, but they must be registered independently with ODVA prior to use.

	 - �The Device Type, again a UINT value, specifies which profile has been used for this device. It must be 
one of the vendor IDs listed in Volume 1, Chapter 6 of the CIP Networks Library or a vendor-specific type 
(see Section 2.6).

	 - �The Product Code is a UINT number defined by the vendor of the device. This code is used to distin-
guish multiple products of the same vendor ID from the same vendor. There is generally a loose associa-
tion between a Catalog Number and aproduct code, but not necessarily.

	 - �The Revision is split into two USINT (Unsigned Short Integer) values specifying a major revision and a mi-
nor revision. Any device change(s) that result in modifying the behavior of the device on the network must 
be reflected in a change to the minor revision at minimum. Any changes in the device’s logical interface, 
e.g., additional attributes, modified/additional I/O assemblies etc., require a change to the major revision 
and this change must be reflected in a revised Electronic Data Sheet (EDS) (see Section 2.7). vendor ID, 
vendor ID,product code and major revision provide an unambiguous identification of an EDS for this de-
vice.

	 - �The Status attribute provides information on the status of the device, e.g., whether it is owned (controlled 
by another device) or configured (to something different than the out-of-the-box default), and whether any 
major or minor faults have occurred.

	 - �The Serial Number is used to uniquely identify individual devices in conjunction with the vendor ID, i.e., 
no two CIP devices from one vendor may carry the same serial number. The 32 bits of the serial number 
allow ample space for a subdivision into number ranges that can be used by different divisions of larger 
companies.

	 - �The Product Name attribute allows the vendor to give a meaningful ASCII name string (up to 32 charac-
ters) to the device.

	 - �The State attribute describes the state of a device in a single UINT value. It is less detailed than the Status attribute.

	 - �The Configuration Consistency Value allows a distinction between a device that has been configured 
and one that has not, or between different configurations in a single device. This helps avoid unnecessary 
configuration downloads.

	 - �The Heartbeat Interval enables the Device Heartbeat Message. This is an unconnected change-of-state 
message that has a settable background cyclic interval between one and 255 seconds. Currently, this 
option is only defined for use on DeviceNet.

	 - �The Supported Language List and International Product Name attributes can be used to describe 
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the product in multiple languages and the Active Language attribute then specifies which of the support-
ed languages is in use.

	 - �The Semaphore attribute provides a semaphore for client access synchronization to the entire device.

	 - �The Assigned_Name, Assigned_Description and Geographical_Location attributes can be used to 
individualize products by the user of the product.

	 - �The Modbus Identity Info attribute can provide identity information in Modbus format to the extent the 
device supports it.

	 - The Protection Mode attribute is an indication of the present mode of protection for the device.

The services supported by the class and instance attributes are either Get_Attribute_Single (typically imple-
mented in DeviceNet and CompoNet devices) or Get_Attributes_All (typically implemented in ControlNet and 
EtherNet/IP devices). The only attributes that can be set are: the Heartbeat Interval, the Active Language, the 
Semaphore, the Assigned_Name, Assigned_Description and Geographical_Location attributes. The only other 
service that typically is supported by the identity object is the Reset service. This Reset service comes with three 
different options that can let the device restart in three different ways.

The behavior of the identity object is described through a state transition diagram.

2.5.2. Parameter Object (Class ID: 0x0F)
This object is described in some detail since it is referred to in Section 2.7, Configuration and Electronic Data 
Sheets. When used, the parameter object comes in two types: a complete object and an abbreviated version 
(parameter object Stub). This abbreviated version is used primarily by DeviceNet and CompoNet devices that 
have only small amounts of memory available. The parameter object stub, in conjunction with the Electronic 
Data Sheet, has roughly the same functionality as the full object (see Section 2.7).

The purpose of the parameter object is to provide a general means of allowing access to many attributes of the 
various objects in the device without requiring a tool (such as a handheld terminal) to have any knowledge about 
specific objects in the device.

The class attributes of the parameter object contain information about how many instances exist in this 
device and a Class Descriptor, indicating, among other properties, whether a full or a stub version is  
supported. In addition, class attributes tell whether a configuration assembly is used and what language is 
used in the parameter object.
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The first six instance attributes are required for the object stub. These are:

These six attributes allow access, interpretation and modification of the parameter value, but the remaining attri-
butes make it much easier to understand the meaning of the parameter:

	 - �The next three attributes provide ASCII strings with the name of the parameter, its engineering units and 
an associated help text;

	 - �Another three attributes contain the minimum, maximum and default values of the parameter;

	 - �Four more attributes can link the scaling of the parameter value so that the parameter can be displayed in 
a more meaningful way, e.g., raw value in multiples of 10 mA, scaled value displayed in amps;

	 - �Another four attributes can link the scaling values to other parameters. This feature allows variable scaling 
of parameters, e.g., percentage scaling to a full range value that is set by another parameter;

	 - �Attribute #21 defines how many decimal places are to be displayed if the parameter value is scaled;

	 - �Finally, the last three attributes are an international language version of the parameter name, its engineer-
ing units and the associated help text.

2.5.3. Assembly Object (Class ID: 0x04)
Assembly objects provide the option of mapping data from attributes of different instances of various classes 
into one single attribute (#3) of an assembly object. This mapping is generally used for I/O messages to maxi-
mize the efficiency of the control data exchange on the network. Assembly mapping makes the I/O data avail-
able in one block; thus, there are fewer connection object instances and fewer transmissions on the network. 
The process data are normally combined from different application objects. An assembly object also can be 
used to configure a device with a single data block, alleviating the need to set individual parameters.

Parameter Value The actual parameter

Link Path Size These two attributes describe the application object/ instance/
attribute from which the parameter value was retrieved.

Descriptor This describes parameter properties, e.g., read-only, monitor 
parameter, etc.

Data Type This describes the data type (e.g., size, range) using a standard 
mechanism defined by CIP

Data Size Data size in bytes
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CIP makes a distinction between input and output assemblies. “input” and “output” in this context are viewed 
from the perspective of the controlling element (e.g., a PLC/PAC). An input assembly in a device collects data 
from the input application (e.g., field wiring terminal, proximity sensor, etc.) and produces it on the network, 
where it is consumed by the controlling device and/or operator interface. An output assembly in a device 
consumes data that the controlling element sends to the network and writes that data to the output applica-
tion (e.g., field wiring terminals, motor speed control, etc.). This data mapping is very flexible; even mapping of 
individual bits is permitted. Assemblies also can be used to transmit a complete set of configurable parameters 
instead of accessing them individually. These assemblies are called configuration assemblies.

Figure 9 shows an example of assembly mapping. The data from application objects 100 and 101 are mapped in 
two instances of the assembly object. Instance 1 is set up as an input assembly for the input data, and instance 2 
as an output assembly for output data. The data block is always accessed via attribute 3 of the relevant assembly 
instance. Attributes 1 and 2 contain mapping information.

I/O assembly mapping is specified for many Device Profiles in Chapter 6 of Volume 1. Device developers then 
can choose which assemblies they support in their products. If none of the publicly defined assemblies fully rep-
resents the functionality of the product, a device vendor may implement additional vendor-specific assemblies 
(Instance IDs 100 – 199).

CIP defines static and dynamic assembly objects. Whereas mapping for static assemblies is permanently programmed 
in the device (ROM), dynamic assemblies can be modified and extended through dynamic mapping (RAM). Most 
simple CIP devices support only static assembly objects. Dynamic assembly objects may be used in more complex 
devices, but they are not very common.
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Figure 9 Example of an Assembly Mapping in a Typical I/O Device!
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2.6. Device Profiles
It would be possible to design products using only the definitions of communication networks and objects, but this 
could easily result in similar products having quite different data structures and behavior. To overcome this situation 
and to make the application of CIP devices much easier, devices of similar functionality have been grouped into ven-
dor IDs with associated profiles. Such a CIP profile contains the full description of the object structure and behavior. 
The following vendor IDs and associated profiles are defined in Volume 1 (profile numbers in parentheses):

Device developers must use a vendor ID to uniquely identify their product. Any device that does not fall 
into the scope of one of the specialized Device Profiles must use the Generic Device profile (0x2B) or a 
vendor-specific profile. What profile is used and which parts of it are implemented must be described in 
the user’s device documentation.

Every profile consists of a set of objects – some required, some optional – and a behavior associated with that 
particular type of device. Most profiles also define one or more I/O data formats (assemblies) that define the 
makeup of the I/O data. In addition to the commonly-defined objects and I/O data assemblies, vendors can 
add objects and assemblies of their own if their devices provide additional functionality. Furthermore, vendors 
can create profiles within the vendor-specific profile range. They are then free to define whatever behavior and 
objects are required for their device as long as they adhere to the general rules for profiles outlined in Chapter 6 
of Volume 1 of the CIP Networks Library. Whenever additional functionality is needed by multiple vendors, ODVA 
encourages coordinating these new features through Special Interest Groups (SIGs), which can then create new 
profiles or additions to existing profiles for everybody’s use and for the benefit of the device users.

- AC Drives (0x02)
- CIP Modbus Device (0x28)
- CIP Modbus Translator (0x29)
- CIP Motion Drive (0x25)
- CIP Motion Encoder (0x2F)
- CIP Motion I/O (0x31)
- CIP Motion Safety Drive Device (0x2D)
- Communications Adapter (0x0C)
- CompoNet Repeater (0x26)
- Contactor (0x15)
- ControlNet Physical Layer Component (0x32)
- DC Drives (0x13)
- DC Power Generator (0x1F)
- Embedded Component (0xC8)
- Encoder (0x22)
- Enhanced Mass Flow Controller (0x27)
- Fluid Flow Controller (0x24)
- General Purpose Discrete I/O (0x07)
- Generic Device, keyable (0x2B)
- Human Machine Interface (HMI) (0x18)
- Inductive Proximity Switch (0x05)

- Limit Switch (0x04)
- Managed Ethernet Switch (0x2C)
- Mass Flow Controller (0x1A)
- Mass Flow Controller, Enhanced (0x27)
- Motor Overload Device (0x03)
- Motor Starter (0x16)
- Photoelectric Sensor (0x06)
- Pneumatic Valve(s) (0x1B)
- Position Controller (0x10)
- Process Control Valve (0x1D)
- Programmable Logic Controller (0x0E)
- Residual Gas Analyzer (0x1E)
- Resolver (0x09)
- RF Power Generator (0x20) 
- Safety Analog I/O Device (0x2A)
- Safety Drive Device (0x2E)
- Safety Discrete I/O Device (0x23)
- Softstart Starter (0x17)
- Turbomolecular Vacuum Pump (0x21)
- Vacuum/Pressure Gauge (0x1C)
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All open (ODVA defined) profiles carry numbers in the 0x00 through 0x63 or 0x0100 through 0x02FF ranges, 
while vendor-specific profiles carry numbers in the 0x64 through 0xC7 or 0x0300 through 0x02FF ranges. All 
other profile numbers are reserved by CIP.

2.7. Configuration and Electronic Data Sheets
CIP provides several options for configuring devices:
	 - �A printed data sheet;
	 - �Parameter objects and parameter object stubs;
	 - �An Electronic Data Sheet (EDS);
	 - �A combination of an EDS and parameter object stubs;
	 - �A configuration assembly combined with any of the above methods.

When using configuration information collected on a printed data sheet, configuration tools can only provide prompts 
for service, class, instance and attribute data and relay this information to a device. While this procedure can do the 
job, it is the least desirable solution since it does not determine the context, content or format of the data.

Parameter objects, on the other hand, provide a full description of all configurable data for a device. Since 
the device itself provides all the necessary information, a configuration tool can gain access to all parameters 
and maintain a user-friendly interface. However, this method imposes a burden on a device with full parameter 
information that may be excessive for a small device with limited internal resources. Therefore, an abbreviated 
version of the parameter object, called a parameter object stub, may be used (see Section 2.5.2). This option 
still allows access to the parameter data, but it does not describe any meaning to the data. parameter object 
stubs in conjunction with a printed data sheet are usable, but certainly not optimal. On the other hand, an EDS 
supplies all of the information that a full parameter object contains, in addition to I/O connection information, so 
the EDS provides the full functionality and ease of use of the parameter object without imposing an excessive 
burden on the individual device. In addition, an EDS provides a means for tools to perform offline configuration 
and to download configuration data to the device at a later time.

An EDS is a simple ASCII text file that can be generated on any ASCII editor. Since the CIP Specification pro-
vides a set of rules for the overall design and syntax of an EDS, specialized EDS editing tools, such as ODVA’s 
EZ-EDS, can simplify the creation of EDS files. The main purpose of the EDS is to give information on several 
aspects of the device’s capabilities, the most important ones being the I/O connections it supports and what 
parameters for display or configuration exist within the device. It is highly recommended that an EDS describe all 
supported I/O connections, as this makes the application of a device in a control system much easier. When it 
comes to parameters, EDS files should contain the attributes of application objects so that software can provide 
user access for monitoring and/or configuration purposes.

Let’s look at some details of the EDS. First, an EDS is structured into sections, each of which starts with a sec-
tion name in square brackets [ ]. The first two sections are mandatory for all EDS files.
	
	 - �[File]: Describes the contents and revision of the file;

	 - �[Device]: Is equivalent to the identity object information and is used to match an EDS to a device;

	 - �[Device Classification]: Describes what network the device can be connected to. This section is optional 
for DeviceNet, required for ControlNet, EtherNet/IP and CompoNet;
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	 - �[ParamClass]: Describes configuration details in addition to class-level attributes of the parameter object;

	 - �[Params]: Identifies all configuration parameters in the device, follows the parameter object definition. Fur-
ther details below;

	 - �[Groups]: Identifies all parameter groups in the device and lists group name and parameter numbers;
	 - �[Assembly]: Describes the structure of data items;

	 - �[Connection Manager]: Describes connections supported by the device. Typically used in ControlNet and 
EtherNet/IP;

	 - �[Connection ManagerN]: Same as the [Connection Manager] section, but only for connection entries that 
do not apply to all CIP ports of the device;

	 - �[Port]: Describes the various network ports a device may have;

	 - �[Capacity]: Specifies the communication capacity of EtherNet/IP and ControlNet devices;

	 - �[Connection Configuration]: This section defines the characteristics of the connection configuration object  
implemented in this device, if a connection configuration object  implementation exists. It is used for EDS-
based I/O Scanner configuration;

	 - �[Event Enumeration]: The Event Enumeration section associates specific event or status codes within a 
device with an international string;

	 - �[Symbolic Translation]: This section is used to publicize the translation between a Symbolic Segment or an 
ANSI Extended Symbol Segment encoded EPATH specification to the equivalent ParamN or AssemN entry 
keywords;

	 - �[Internationalization]: This section allows the representation of all strings within an EDS in multiple languages;

	 - �[Modular]: Describes modular structures inside a device;

	 - �[IO_Info]: Describes I/O connection methods & I/O sizes. Allowed for DeviceNet only;

	 - �[Variant_IO_Info]: Describes multiple IO_Info data sets. Allowed for DeviceNet only;

	 - �[EnumPar]: Enumeration list of parameter choices to present to the user. This is an old enumeration meth-
od specified for DeviceNet only;

	 - �[ControlNet Physical Layer]: Describes details of the ControlNet physical layer. Allowed for ControlNet only;

	 - �[CompoNet_Device]: Describes the type of CompoNet device. Allowed for CompoNet only;

	 - �[CompoNet_IO]: Describes the I/O connection details of CompoNet slaves. Allowed for CompoNet only;
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	 - �[Modbus Mapper]: Used to provide a description of individual Modbus items that correspond to a specific 
CIP object attribute.

	 - �Object class sections: These sections – one for every object class – can be used to describe all object 
details, such as instances, attributes and supported services.

These sections allow a very detailed device description, although only a few of these details are described here. 
Further reading is available in endnotes [41], [42].

A tool with a collection of EDS files will first use the [Device] section to try to match an EDS with each device it 
finds on a network. Once this is done and a particular combination of device and EDS is chosen, the tool can then 
display device properties and parameters and allow their modification if the user so chooses. A tool may also dis-
play what I/O connections a device allows and which of these are already in use. EDS-based tools are mainly used 
for slave or I/O Adapter devices, as I/O Scanner devices typically are too complex to be configured through EDS 
constructs alone. For those devices, the EDS is used primarily to identify the device and then guide the tool to call 
a matching configuration applet.

A particular strength of the EDS approach lies in the methodology of parameter configuration. A configuration 
tool typically takes all of the information that can be supplied by the parameter objects and an EDS and displays 
it in a user-friendly manner. In many cases, this enables the user to configure a device without needing a de-
tailed manual, as the tool presentation of the parameter information and the help text enables decision making 
for a complete device configuration. This assumes the developer of the product and the EDS file has supplied all 
required information and any optional information with completeness and accuracy.

A complete description of what can be done with EDS files goes well beyond the scope of this book. Available 
materials on this topic provide greater detail [41], [42].

2.8. CIP Routing
CIP defines mechanisms that allow the transmission of messages across multiple networks, provided that the 
intermediate devices (CIP routers) between the various networks are equipped with the objects and services 
used in CIP routing. If this is the case, the message will be forwarded from CIP router to CIP router until it has 
reached its destination node. Here is how it works:

For unconnected explicit messaging, the actual explicit message to be executed on the target device is 
“wrapped up” inside of another explicit message service, the so-called Unconnected_Send service (Service 
Code 0x52 of the connection manager object). This service message contains all the information about the 
transport mechanism, such as the request time-out (which may be modified as the message moves through 
each CIP router), the message request path information and the routing path information.

The first CIP router device that receives an Unconnected_Send message will take its contents and forward it to the 
next CIP router, as specified within the Route Path section of the message. Before the message is actually sent, the 
“used” part of the path is removed, but is remembered by the CIP router device for the return of the response. The CIP 
router may subtract some time from the timeout value, thereby reducing the timeout value as it closes in on the des-
tination. This process is executed for every CIP router the message goes through, until the final CIP router is reached. 
The number of CIP routers an Unconnected_Send may pass through is theoretically limited by the message length.
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Once the Unconnected_Send message has arrived at the last CIP router, the Unconnected_Send “wrapper” is 
removed and the “inner” explicit message is sent to the target device, which executes the requested service and 
generates a response. That response, as received from the target device, is then transported back through all the 
CIP routers it traversed during its forward journey until it reaches the originating node. It is important to note in this 
context that the transport mechanism may have been successful in forwarding the message and returning the re-
sponse, but the response still could contain an indication that the desired service could not be performed success-
fully in the target network/device. Through this mechanism, the CIP router devices do not need to know anything 
about the message paths ahead of time so no pre-configuration of the CIP router devices is required. This is often 
referred to as “seamless routing”.

When a connection (I/O or Explicit) is set up using the Forward_Open service (see Section 3.1.14), it may go to 
a target device on another network. To enable the appropriate setup process, the Forward_Open message may 
contain a field with path information describing a route to the target device. This is very similar to the Unconnect-
ed_Send service described above. The routing information is then used to create routed connections within the 
CIP routing devices between the originator and the target of the message. Once set up, these connections auto-
matically forward any incoming messages for this connection to the proper outgoing port. Again, this is repeated 
through each CIP router until the message has reached the target node. As with routed unconnected explicit mes-
sages, the number of hops is generally limited only by the capabilities of the devices involved. In contrast to routed 
unconnected messages, routed connected messages do not carry path information. Since connected messages 
always use the same path for any given connection, the path information that was given to the routing devices 
during connection setup is held there as long as the connection exists. Again, the CIP routing devices do not have 
to be preprogrammed; they are self-configured during the connection establishment process.

2.9. Data Management
The Data Management part of the CIP Specification describes addressing models for CIP entities and the data 
structures of the entities themselves.

Entity addressing is done by Segments, which allows flexible usage so that many different types of addressing 
methods can be accommodated. Two uses of this addressing scheme (logical segments and data types) are 
looked at in more detail below.

2.9.1. Logical Segments
Logical segments (first byte = 0x20 – 0x3F) are addressing Segments that can be used to address objects and their 
attributes within a device. They are typically structured as follows: [class ID] [instance ID] [attribute ID, if required].

Each element of this structure allows various formats (1 byte, 2 byte and 4 byte). Figure 10 shows a typical 
example of this addressing method.
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This type of addressing is commonly used to point to assemblies, Parameters and other addressable entities within a 
device. It is used extensively in EDS files, but also within explicit messages, to name just a few application areas.

2.9.2. Data Types
Data types (first byte = 0xA0–0xDF) can be either structured (first byte = 0xA0–0xA3, 0xA8 or 0xB0) or elemen-
tary (first and only byte = 0xC1–0xDE). All other values are reserved. structured data types can be arrays of 
elementary data types or a collection of arrays or elementary data types. Of particular importance in the context 
of this book are elementary data types, which are used within EDS files to specify the data types of parameters 
and other entities.

Here is a list of commonly used data types:

	 - �1-bit (encoded into 1 byte):
		  • Boolean, BOOL, Type Code 0xC1;

	 - �1-byte:
		  • Bit string, 8 bits, BYTE, Type Code 0xD1;
		  • �Unsigned 8-bit integer, USINT, Type Code 0xC6;
		  • Signed 8-bit integer, SINT, Type Code 0xC2;

	 - �2-byte:
		  • Bit string, 16-bits, WORD, Type Code 0xD2;
		  • �Unsigned 16-bit integer, UINT, Type Code 0xC7;
		  • �Signed 16-bit integer, INT, Type Code 0xC3;

	 - �4-byte:
		  • �Bit string, 32 bits, DWORD, Type Code 0xD3;
		  • �Unsigned 32-bit integer, UDINT, Type Code 0xC8;
		  • �Signed 32-bit integer, DINT, Type Code 0xC4.

The data types in CIP follow the requirements of IEC 61131-3 [17] [16] .
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Figure 10 Logical Segment Encoding Example
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2.10. Auxiliary Power Distribution System
The CIP application layer can be used on a variety of network technologies. Each CIP network specification 
consists of two volumes. The physical layer behavior defined on a particular network is described in the appro-
priate CIP network adaptation volume.

Chapter 8 of Volume 1 of the CIP Networks Library defines an optional auxiliary power distribution system that is 
separate and distinct from the physical layer requirements of any of the CIP networks.

Auxiliary power may be used to provide application power for such devices as input/output modules, Emergen-
cy Stop circuitry, and other application-specific needs. The cabling system provides 4-wire, two-circuit wiring 
that supplies 24V switched and un-switched power. Depending on the cabling selected by the designer, the 
maximum current ranges from 7 to 10 amperes. This standard specifies system topologies, cable and connec-
tor requirements and power supply requirements for auxiliary power distribution.

This system is not intended to provide redundant network power for already powered networks such as Devi-
ceNet or CompoNet.

2.11. Maintenance and Further Development of the Specifications
ODVA has a set of working groups that maintain the specifications and create protocol extensions, e.g., 
new profiles or functional enhancements such as CIP Sync and CIP Safety. These groups are called Spe-
cial Interest Groups (SIGs).

The results of these SIGs are written up and presented to the Technical Review Board (TRB) for approval and 
then incorporated into the specifications. Only ODVA members can work within the SIGs. These participants 
have the advantage of advance knowledge of technical changes coming to the specifications. Participation in 
one or several SIGs is, therefore, highly recommended.
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3. Network Adaptations of CIP
There are currently four public adaptations of CIP, each based on different data link layers and transport mecha-
nisms, which maintain the common upper layers of CIP, as illustrated earlier in Figure 1.

3.1. DeviceNet

3.1.1. Introduction
DeviceNet was the first implementation of CIP. As mentioned in Section , DeviceNet is based on the Controller 
Area Network (CAN). DeviceNet uses a subset of the CAN protocol (11-bit identifier only, no remote frames). The 
DeviceNet adaptation of CIP accommodates the 8-byte packet size limitation of the CAN protocol and allows 
the use of simple devices with minimal processing power. For a more detailed description of the CAN protocol 
and some of its applications, see endnote [18].

3.1.2. Relationship to standards
Like other CIP Networks, DeviceNet follows the Open Systems Interconnection (OSI) model, an ISO standard for 
network communications that is hierarchical in nature. Networks that follow this model define all necessary func-
tions, from physical implementation up to the protocol and methodology to communicate control and information 
data within and across networks. 

Figure 11 shows the relationship between CIP and DeviceNet.

	
  

Figure 11 Relationship Between 
CIP and DeviceNet
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The DeviceNet adaptation of CIP is described in Volume 3 of the CIP Networks Library [3]. All other features are 
based on CIP. DeviceNet is also described in a number of national and international standards, e.g. [25], [30].

3.1.3. DeviceNet Features
DeviceNet is a communication system at the low end (sensors, actuators) of the industrial communication spec-
trum with the following features:

	 - �Trunkline/dropline configuration;

	 - �Support for up to 64 nodes;

	 - �Node insertion or removal while the network is up and running; 

	 - �QuickConnect for devices that are frequently removed from and added to the network, e.g., robot tools;

	 - �Simultaneous support for both network-powered devices, e.g., sensors, and separately-powered devices, 
e.g., actuators;

	 - �Use of sealed or open-style connectors;

	 - �Protection from wiring errors;

	 - �Selectable data rates of 125 kBaud, 250 kBaud and 500 kBaud;

	 - �Adjustable power configuration to meet individual application needs;

	 - �High current capability (up to 16 Amps per supply);

	 - �Operation with off-the-shelf power supplies;

	 - �Power taps that allow the connection of several power supplies from multiple vendors that comply with 
DeviceNet standards;

	 - �Built-in overload protection;

	 - �Power available along the bus: both signal and power lines contained in the cable;

	 - �Several cables that are suitable for a number of different applications.
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3.1.4. DeviceNet Physical Layer and Relationship to CAN
The physical layer of DeviceNet is an extension of the ISO 11898 standard [19]. This extension defines the fol-
lowing additional details:

	 - �Improved transceiver characteristics that allow the support of up to 64 nodes per network;

	 - �Additional circuitry for over-voltage and mis-wiring protection;

	 - �Several types of cables for a variety of applications;

	 - �Several types of connectors for open (IP 20) and sealed (IP 65/67) devices.

The cables described in the CIP Networks Library were designed specifically to meet minimum propagation 
speed requirements to ensure that they can be used up to the maximum system length. Figure 12 shows exam-
ples of some of the key characteristics that can be achieved with some of the defined cable types in conjunction 
with suitable transceiver circuits and proper termination resistors (121 Ω).

ODVA has issued a guideline [8] that gives complete details of how to build the physical layer of a DeviceNet 
Network, equivalent information can also be found in an IEC standard [27].

Developers of DeviceNet devices can create DeviceNet circuits with or without physical layer isolation (both 
versions are fully specified). Furthermore, a device may take some or all of its power from the bus, thus avoiding 
extra power lines for devices that can live on the power supplied through the DeviceNet cable.

All DeviceNet devices must be equipped with one of the connectors described in Volume 3, although hard wir-
ing of a device is allowed, provided the node is removable without severing the trunk.

3.1.5. Frame Structure
DeviceNet uses standard CAN frames with an 11-bit identifier, for further details see [19], [20] and chapter 3.1.15 of 
this publication.

Figure 12 Data Rate vs. Trunk and Drop Length	
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3.1.6. Protocol Adaptations
On the protocol side, there are basically two adaptations of CIP that have been made to better accommodate it 
to the CAN data frame:

	 - �Shortening CIP explicit messages to 8 bytes or less where possible, with the use of message fragmenta-
tion for longer messages;

	 - �Definition of a master/slave communications option to minimize the connection establishment overhead 
(see chapter 3.1.17).

These two features have been created to allow the use of simple and thus inexpensive microcontrollers. This is 
particularly important for small, cost-sensitive devices like photoelectric or proximity sensors. As a result of this 
adaptation, the DeviceNet protocol in its simplest form has been implemented in 8-bit microprocessors with as 
little as 4 Kbytes of code memory and 175 bytes of RAM.
	
The message fragmentation mentioned previously comes in two varieties:

	 - �For I/O messages the use of fragmentation is defined by the maximum length of the data to be transmit-
ted through a connection. Any connection that has more than 8 bytes to transmit always uses the frag-
mentation protocol, even if the actual data to be transmitted is 8 bytes or less, e.g., an “Idle” Message.

	 - �For explicit messaging, the use of the fragmentation protocol is indicated in the header of every message, 
since the actual frame size can vary in length, depending on the content of the explicit message. The 
actual fragmentation protocol is contained in one extra byte within the message that indicates whether the 
fragment is a start fragment, a middle fragment or an end fragment. A modulo 64 rolling fragment counter 
allows very long fragmented messages, and is limited in theory only by the maximum Produced or Con-
sumed Connection sizes (65,535 bytes). In reality, the capabilities of the devices limit the message sizes.

3.1.7. Indicators and Switches
Indicators and switches are optional on DeviceNet. However, certain DeviceNet users not only require indicators 
and switches, they also specify what type to use. Many factors must be considered before implementing these 
devices, including packaging, accessibility and customer expectations.

Indicators allow the user to determine the state of the device and its network connection(s). Since indicators can 
be very useful when troubleshooting the operation of a device, manufacturers are advised to incorporate some 
or all of the indicators described in the DeviceNet specification. While devices may incorporate additional indi-
cators with behavior not described in the specification, any indicators labeled per specification must also follow 
their specified behavior.

Similarly, devices may be built with or without switches or other directly accessible means for configuration of 
MAC ID and baud rate. If these switches are used, certain rules apply to how these values are used at power-up 
and during the operation of the device.
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3.1.8. Additional Objects
The DeviceNet Specification defines one additional object, the DeviceNet object.

3.1.8.1. DeviceNet Object (Class ID: 0x03)
A DeviceNet object is required for every DeviceNet port of the device. The instance attributes of this object 
contain information on how this device uses the DeviceNet port, including the MAC ID of the device and the 
(expected) baud rate of the DeviceNet network the device is attached to. Both attributes are always expected 
to be non-volatile, i.e., after a power interruption, the device is expected to try to go online again with the same 
values that were stored in these attributes before the power interruption. Devices that set these values through 
switches typically override any stored values at power-up. The DeviceNet object may also contain information on 
further aspects associated with its DeviceNet behavior, such as information related to the master/slave commu-
nications status, QuickConnect support (see chapter 3.1.17.7) and Active Node Table.

3.1.9. Network Access
DeviceNet uses the network access mechanisms described in the CAN specification, i.e., bitwise arbitration 
through the CAN Identifier for every frame to be sent. This requires a system design that does not allow multiple 
uses of any of these identifiers. Since the node number of every device is coded into the CAN Identifier (see 
chapter 3.1.15), it is generally sufficient to make sure that none of the node numbers exists more than once on 
any given network. This is guaranteed through the Network Access algorithm (see chapter 3.1.10).

3.1.10. Going Online
Any device that wants to communicate on DeviceNet must go through a network access algorithm before 
any communication is allowed. The main purpose of this process is to avoid duplicate node IDs on the same 
network, a secondary purpose is to announce a node’s presence on the link for nodes that maintain an Active 
Node Table. Every device that is ready to go online sends a Duplicate MAC ID Check Message containing its 
port number, vendor ID and serial number. If another device is already online with this MAC ID or is in the pro-
cess of going online with this MAC ID, it responds with a Duplicate MAC ID Response Message that directs the 
checking device to go offline and not communicate any further.

If two or more devices with the same MAC ID happen to transmit the Duplicate MAC ID Check Message at 
exactly the same time, all of them will win arbitration at the same time and will proceed with their message. 
However, since this message has different values (port number, vendor ID and serial number) in the data field, 
the nodes will detect bit errors and will flag error frames that cause all nodes to discard the frame. This reaction 
triggers a re-transmission of the message by the sending node. While this action may eventually result in a Bus-
Off condition for the devices involved, a situation with duplicate node IDs is safely avoided.

3.1.11. Offline Connection Set
The Offline Connection Set is a set of messages created to communicate with devices that have failed to go 
online (see Section 3.1.10), to allow a new MAC ID to be set. At any given point in time, only one offline device 
and one tool can use the Offline Connection Set, therefore, the first step in its use is to determine if a tool has 
ownership of the Offline Connection Set. Once a tool has successfully claimed ownership, it can check whether 
there are any nodes on the network that are in the offline state. If such nodes exist, the tool can then determine 
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their vendor ID(s) and serial number(s). Using this information, which is unique by definition, the tool can then ad-
dress a specific device which responds by flashing an indicator. Once this identification is complete and the user 
is certain communication is established with the intended device, the tool can then send a new MAC address to 
the device. The target device then restarts the Duplicate MAC ID algorithm and tries to go online with the new 
MAC Address. More information on this topic can be found in [3] and [18].

3.1.12. DeviceNet Status Indication Messages
There are two optional DeviceNet messages that indicate a status or a status transition of a device. One of 
them is called “Device Heartbeat” and the other is called “Device Shutdown”. Both messages are transmitted 
by a UCMM capable device as an unconnected response message (Message Group 3, Message ID 5) and by a 
Group 2 Only Server as an unconnected response message (Message Group 2, Message ID 3). These messag-
es are independent of any other communication relationship that may exist with other devices on the network.

The Device Heartbeat Message, sent at a heartbeat interval set in the ID object, provides a way for a device to 
indicate its presence on the network and its current “health” condition. The Device Shutdown Message provides 
a way for a device to indicate that it is in the process of shutting down and going to the offline state.

3.1.13. Explicit Messaging
All explicit messaging in DeviceNet is done via connections and the associated connection object instances. 
However, these objects first must be set up in the device. This can be done by using the predefined master/
slave connection set to activate a static connection object already available in the device or by using the 
UCMM (unconnected message manager) port of a device, to dynamically set up a connection object for 
explicit messaging. The only messages sent to the UCMM are “Open” or “Close” requests that set up or 
tear down an explicit messaging connection, while the only messages that can be sent to the master/slave 
equivalent of the UCMM called the Group 2 Only Unconnected Port, are the “Allocate” or “Release” service 
requests (see chapter 3.1.17). Explicit messages always pass via the message router object to the object that 
is being addressed (refer to Figure 8).

As mentioned in Section 2.3, explicit messages on DeviceNet have a very compact structure to make them fit 
into the 8-byte frame in most cases. Figure 13 shows a typical example of a request message using the 8/8 
Message Body Format (“8/8” means 1 byte for Class ID, 1 byte for Instance ID).

Figure 13 Non-Fragmented Explicit Request Message Format	
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The consumer of this explicit message responds using the format shown in Figure 14. The consumer sets the 
R/R (Request/Response) bit and repeats the Service Code of the request message. Any data transferred with 
the response is entered in the service data field.

Most messages will use the 8/8 format shown in Figure 13, since they only need to address Class and Instance 
IDs up to 255. If there is a need to address any class/instance combinations above 255, then this is negotiated 
between the two communication partners during the setup of the connection. Should an error occur, the receiv-
er responds with the Error Response Message. The Service Code for an Error Response message is 0x14, and 
two bytes of error code are included in the service data field to convey more information about the nature of the 
error. See endnotes [3], [18] for further details of message encoding, including the use of fragmentation.

3.1.14. I/O Messaging
Since DeviceNet does not use a Real-Time Header or sequence count value like ControlNet and EtherNet/IP 
do, I/O messages in DeviceNet have a very compact structure. For I/O data transfers up to 8 bytes long, the 
data is sent in a non-fragmented message, which uses the entire CAN data field for I/O data. For I/O data 
transfers longer than 8 bytes, a fragmentation protocol spreads the data over multiple frames. This fragmen-
tation protocol uses one byte of the CAN data field to control the fragmentation of the data. See Figure 15 
and Figure 16 for examples of fragmented and non-fragmented I/O messages. I/O messages without data 
(i.e., with zero length data) indicate the “Idle” state of the producing application. Any producing device can do 
this – master, slave or peer.

Figure 14 Non-Fragmented Explicit Response Message Format
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Figure 15 Non-Fragmented I/O Message Format
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As mentioned, I/O messages are used to exchange high-priority application and process data via the net-
work, and this communication is based on the producer/consumer model. The associated I/O data are always 
transferred from one producing application object to one or more consuming application objects. This is accom-
plished using I/O messages via I/O messaging connection objects (Figure 17 shows two consuming applica-
tions) that have been pre-set in the device. This can be done in one of two ways by using:

	 - �The predefined master/slave connection set to activate a static I/O connection object already available in 
the device;

	 - �An explicit messaging connection object already available in the device to dynamically create and set up 
an appropriate I/O connection object.

I/O messages usually pass directly to the data of the assigned application object. The assembly object is the 
most common application object used with I/O connections. Also refer to Figure 8.

3.1.15. Using the CAN Identifier
DeviceNet is based on the standard CAN protocol and therefore uses an 11-bit message identifier. A distinction 
therefore can be made between 211 = 2048 messages. The 6-bit MAC ID field is sufficient to identify a device 

Figure 16 Fragmented I/O Message Format
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because a DeviceNet Network is limited to a maximum of 64 participants.

The overall CAN Identifier range is divided into four Message Groups of varying sizes, as shown in Figure 18:

The bitwise arbitration mechanism of CAN determines the priority of messages on DeviceNet. When two nodes 
transmit simultaneously, the numerically lower CAN Identifier value will win arbitration. The arbitration mechanism 
is explained in the CAN specification [20]. A detailed description is beyond the scope of this document, but in 
short, transmitted bits are shifted onto the wire most significant bit first, so a zero in the upper bit positions will 
take precedence over a one. As is shown in Figure 18, Message Group 1 has a zero in bit 10, so it is the highest 
priority group. Group 2 is the second highest priority group because of the zero in bit 9. Group 3 is the next 
highest priority group, because the CAN IDs contain a one in bits 9 and 10. All valid Group 3 Message IDs are 
lower numerically than the corresponding bits (8-6) in Group 4 and therefore Group 4 is the lowest priority of all.
In DeviceNet, the CAN Identifier is the connection ID. This comprises the Message Group ID, the Message 
ID within this group and the device’s MAC ID, which can be the source or destination address. The definition 
depends on the Message Group and the Message ID. The significance of the message within the system is 
defined by the Message Group and Message ID.

The four Message Groups are used as follows:

Message Group 1 is assigned 1024 CAN Identifiers (0x0000 – 0x03FF), which is 50 % of all identifiers avail-
able. Up to 16 different Message IDs are available per device (node) within this group. The priority of a message 
within this group is primarily determined by the Message ID (the significance of the message), and only after that 
by the source MAC ID (the producing device). If two devices transmit a Message Group 1 message at the same 
time, then the device with the lower Message ID will always win the arbitration. However, if two devices transmit 
the same Message ID at the same time on the CAN bus, then the device with the lower MAC ID will win. The 
messages of Group 1 are, therefore, well suited for the exchange of high-priority process data.

Message Group 2 is assigned 512 identifiers (0x0400 – 0x05FF). Most of the Message IDs in this group are 
optionally defined for what is commonly referred to as the predefined master/slave connection set (see chap-
ter 3.1.17). One Message ID is reserved for the Duplicate Node ID Check (see chapter 3.1.10). Priority within 
Message Group 2 is determined primarily by the MAC ID and, only after that, by the Message ID. This message 
group was designed so that a CAN controller with an 8-bit mask is able to filter out its Group 2 Messages based 
on MAC ID. This makes it possible for very low cost, low functionality microcontrollers with integral CAN control-
lers to be suitable for use on DeviceNet.
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Figure 18 Definition of the Message Groups
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Message Group 3, with 448 CAN Identifiers (0x0600 – 0x07BF), has a similar structure to Message Group 1, 
however, it is mainly used for low priority process data exchange due to the relative priority difference between 
Groups 1 and 3. In addition, the main use of this group is setting up dynamic Explicit Connections. Seven Mes-
sage IDs per device are possible, and two of these are reserved for what is commonly referred to as the UCMM 
port (see chapter 3.1.16).

Message Group 4, with 48 CAN Identifiers (0x07C0 – 0x07EF), does not include any MAC IDs, only Message 
IDs. The messages in this group are only used for network management. Four Message IDs are currently as-
signed for services of the Offline Connection Set.

The remaining 16 CAN Identifiers (0x07F0 – 0x07FF) are invalid CAN IDs and thus are not permitted for use in 
DeviceNet systems.

With this allocation of CAN Identifiers, the unused CAN Identifiers cannot be used by other devices. Therefore, 
each device has exactly 16 Message IDs in Group 1, eight Message IDs in Group 2 and seven Message IDs 
in Group 3. One advantage of this system is that the CAN Identifiers used in the network can always be clear-
ly assigned to a device. Devices are responsible for managing their own identifiers. This simplifies the design, 
troubleshooting and diagnosis of DeviceNet systems, as a central tool that keeps a record of all CAN ID assign-
ments on the network is not needed.

3.1.16. Connection Establishment
As described in chapters 3.1.12 and 3.1.14, messages on DeviceNet are always exchanged in a connec-
tion-based manner. Communication objects must be set up for this purpose. These are not initially available 
when a device is powered on; they first have to be created. There are two ports by which a DeviceNet device 
can be addressed when first powered on, the unconnected message manager port (UCMM port) or the Group 
2 Only Unconnected Explicit Request port, which is defined by the predefined master/slave connection set. Pic-
ture these ports as doors to the device. Only one key will unlock each door. The appropriate key for each lock is 
the connection ID – i.e., the CAN Identifier – of the selected port. Other doors in the device can be opened only 
if and when the appropriate key is available and other instances of connection objects are set up.

The setting up of communication relationships (i.e., connections) via the UCMM port represents a general pro-
cedure that should be adhered to with all DeviceNet devices. Devices that feature the predefined master/slave 
connection set and are UCMM capable are called Group 2 Servers. A Group 2 Server can be addressed by one 
or more connections from one or more clients.

Since UCMM capable devices need a good amount of processing power to service multiple communication re-
quests, a simplified communication establishment and I/O data exchange method has been created for low-end 
devices. This is called the predefined master/slave connection set (see chapter 3.1.17). This covers as many 
as five predefined connections that can be activated (assigned) when accessing the device. The predefined 
master/slave connection set represents a subset of the general connection establishment method, and it is lim-
ited to pure master/slave relations. Slave devices that are not UCMM capable and only support this subset are 
called Group 2 Only Servers. Only the master that allocates it can address a Group 2 Only Server. All messages 
received by this device are defined in Message Group 2.

For more details of the connection establishment using UCMM and the master/slave connection set, refer to 
endnotes [3], [18].
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3.1.17. Predefined Master/Slave Connection Set
Establishing a connection via the UCMM port requires a relatively large number of steps that must be complet-
ed to allow data exchange via DeviceNet and the devices must provide resources to administer the dynamic 
connections. Because every device can set up a connection with every other device, and the source MAC ID 
of the devices is contained in the connection ID, the CAN Identifier (connection ID) may have to be filtered via 
software. This depends on how many connections a device supports, and on the type and number of screeners 
(hardware CAN ID filters) of the CAN chip used in the device’s implementation.

While this approach maximizes use of the multicast, peer-to-peer, and producer/consumer capabilities of CAN, 
it requires a higher performance CPU and more RAM and ROM resources. These requirements eliminate an 
entire class of low cost microcontrollers with internal CAN controllers from consideration, raising the cost of 
implementation to levels that preclude cost effective solutions for low-end (e.g., low end-user cost) devices. The 
predefined master/slave connection set was designed to minimize message processing and to take advantage 
of the limited screening capabilities of many CAN controllers. The predefined master/slave connection set is the 
way that the vast majority of devices communicate on DeviceNet.

The predefined master/slave connection set defines an alternate way to establish connections called the Group 
2 Only Unconnected Explicit Request Port. This method allows a device to limit the messages received to only 
those in Group 2 with its own MAC ID. This greatly reduces the amount of packets that a node must deal with. 
A CAN controller with a single mask and match screener (a so called BasicCAN screener) can be used in this 
type of device, which makes it possible to use the low cost microcontrollers and simple CAN controllers men-
tioned earlier. Devices that operate in this manner are referred to as Group 2 Only Servers, deriving their name 
from the fact that they are only required to receive messages in Group 2.

The predefined master/slave connection set is also used in UCMM capable devices. Such devices are referred 
to as Group 2 Servers, deriving their name from the fact that they respond to Group 2 messages but are not 
limited to just Group 2 messages.

Many of the reasons for defining the predefined master/slave connection set were due to hardware limitations 
prevalent when the protocol was first developed. Many of the cost considerations have changed as hardware 
evolved over time. Today, most devices can be implemented with a UCMM port and still be cost effective. This is 
the preferred type of device to develop today. For reasons that go beyond this scope of this document, devic-
es that are not capable of UCMM place extra burden on other devices and tools. Except in extremely low cost 
situations, UCMM should always be a design goal for DeviceNet products.

The predefined master/slave connection set provides an interface for a set of up to five pre-configured connec-
tion types in a node.

The basis of this model is a 1:n communication structure consisting of one control device and decentralized 
I/O devices. The central portion of such a system is known as the “Master” and the decentralized devices 
are known as “Slaves”. Multiple masters are allowed on the network, but a slave can only be allocated to one 
master at any time.

The predefined connection objects occupy instances 1 to 5 in the connection object (Class ID 0x05, see Section 2.4):
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	 - �Explicit Messaging Connection:

		  • �Group 2 Explicit Request/Response Message (Instance ID 1);

	 - �I/O Messaging Connections:

		  • Polled I/O connection (Instance ID 2);

		  • Bit-strobe I/O connection (Instance ID 3);

		  • �Change of State or cyclic I/O connection (Instance ID 4);

		  • Multicast Polling I/O connection (Instance ID 5).

The messages to the slave are defined in Message Group 2, and some of the responses from the slave are con-
tained in Message Group 1. The distribution of connection IDs for the predefined master/slave connection set is 
defined as shown in Figure 19.

Because the CAN ID of most of the messages the master produces contains the destination MAC ID of the 
slave, it is imperative that only one master talks to any given slave. Therefore, before it can use this Predefined 
Connection Set, the master must first allocate it with the device. The DeviceNet object manages this important 
function in the slave device. It allows only one master to allocate its Predefined Connection Set, thereby prevent-
ing duplicate CAN IDs from appearing on the wire.

Figure 19 Connection IDs of the Predefined Master/Slave Connection Set	
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The two services used are called Allocate_Master/Slave_Connection_Set (Service Code 0x4B) and Release_
Group_2_Identifier_Set (Service Code 0x4C). These two services always access instance 1 of the DeviceNet 
object (Class ID 0x03) (see Figure 20).

Figure 20 shows the Allocate Message with 8-bit Class ID and 8-bit Instance ID, a format that is always used 
when it is sent as a Group 2 Only unconnected message. It also may be sent across an existing connection and 
in a different format if a format other than 8/8 was agreed during the connection establishment.

The Allocation Choice Byte is used to determine which predefined connections are to be allocated (see Figure 21).

The associated connections are activated by setting the appropriate bits. Change of State and Cyclic are mutu-
ally exclusive choices. The Change of State/Cyclic Connection may be configured as not acknowledged using 
the acknowledge suppression bit. The individual connection types are described in more detail below.

The allocator’s MAC ID contains the address of the node (master) that wants to assign the predefined master/slave 
connection set. Byte 0 of this message differs from the allocator’s MAC ID if this service has been passed on to a 
Group 2 Only Server via a Group 2 Only Client (what is commonly referred to as a “proxy function”).

The slave, if not already claimed, responds with a Success Message. The connections are now in the Configur-
ing State. Setting the Expected_Packet_Rate EPR (Set_Attribute_Single service to attribute 9 in the appropriate 
connection object instance, value in ms) starts the connection’s time-monitoring function. The connection then 
changes into Established State, and I/O messages begin transferring via this connection.

The allocated connections can be released individually or collectively through the Release_ Master/Slave_Con-
nection_Set service (Service Code 0x4C), using the same format as that in Figure 20, except that the last byte 
(Allocator’s MAC ID) is omitted.
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Figure 20 Allocate_Master/Slave_Connect_Set request message
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The following is an explanation of the four I/O connection types in the predefined master/slave connection set.

3.1.17.1. Polled I/O Connection
A polled I/O connection is used to implement a classic master/slave relationship between a control unit 
and a device. In this setup, a master can transfer data to a slave using the Poll Request and receive data 
from the slave using the Poll Response. Figure 22 shows the exchange of data between one master and 
three slaves in Polled I/O mode.

The amount of data transferred in a message between a master and a slave using the polled I/O connection 
can be any length. If the length exceeds 8 bytes, the fragmentation protocol is automatically used. A polled I/O 
connection is always a point-to-point connection between a master and a slave. The slave consumes the Poll 
Message and sends back an appropriate response (normally, its input data).

The Polled Connection is subject to a time-monitoring function, which can be adjusted, in the device. A Poll Com-
mand must have been received within this time (4 × EPR) or else the connection reverts to time-out mode. When 
a connection times out, the node optionally may go to a preconfigured fault state as set up by the user. A master 
usually polls all the slaves in a round-robin manner.

Figure 22 Polled I/O Connections	
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A slave’s response time to a poll command is not defined in The DeviceNet Specification. While this provides 
flexibility for slave devices to be tailored to their primary application, it may also exclude the device from use in 
higher-speed applications.

3.1.17.2. Bit-Strobe I/O Connection
The master’s transmission on this I/O connection is the bit-strobe command. Using this command, a master 
multicasts one message to reach all its slaves allocated for the bit-strobe connection. The frame sent by the 
master using a bit-strobe command is always 8 bytes or 0 bytes (if Idle). From these 8 bytes, each slave is as-
signed one bit (see Figure 23). Each slave can send back as many as 8 data bytes in its response.

A bit-strobe I/O connection represents a multicast connection between one master and any number of 
strobe-allocated slaves (see Figure 24). Since all devices in a network receive the bit-strobe command at the 
same time, they can be synchronized by this command. When the bit-strobe command is received, the slave 
may consume its associated bit, and then send a response of up to 8 bytes.

	
  

 

 

Byte 0 
7 0 Bit Numbers 

 MAC ID 7 MAC ID 0 

Byte 1 
7 0 Bit Numbers 

 MAC ID 15 MAC ID 8 

••• Byte 6 
7 0 Bit Numbers 

 MAC ID 55 MAC ID 48 

Byte 7 
7 0 Bit Numbers 

 MAC ID 63 MAC ID 56 

Figure 23 Data Format of the Bit-Strobe I/O Connection
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Since this command uses the source MAC ID in the connection ID (see Figure 19), devices that support the 
bit-strobe I/O connection and have a CAN chip with screening limited to only 8 bits of the CAN ID (11 bits) must 
perform software screening of the CAN Identifier.

3.1.17.3. Change of State/Cyclic I/O Connection
The COS/cyclic I/O connection differs from the other types of I/O connections in that both endpoints produce 
their data independently. This can be done in a change of state or cyclic manner. In the former case, the COS 
I/O connection recognizes that the application object data indicated by the Produced_Connection_Path has 
changed. In the latter case, a timer of the cyclic I/O connection expires and therefore triggers the message 
transfer of the latest data from the application object.

A COS/cyclic I/O connection can be set up as acknowledged or unacknowledged. When acknowledged, the 
consuming side of the connection must define a path to the acknowledge handler object to ensure proper han-
dling of acknowledgments and management of any required retries.

Figure 25 shows the various COS/Cyclic I/O connection possibilities.
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A COS/cyclic I/O connection can also originate from a master, making it appear to the slave like a polled I/O 
connection. This can be seen in Figure 19 since the same connection ID is used for the master’s polled I/O 
message as is used for the master’s COS/cyclic I/O message. COS Connections have two additional behaviors 
not present in other connection types. The Expected Packet Rate (EPR) is used as a default production trigger 
so that, if the connection data have not changed after the EPR timer has expired, it will be resent anyway. This 
“heartbeat”, as it is sometimes called, is utilized so the consuming node can know the difference between a 
node that has gone offline and one whose data have not changed. COS Connections also have a Production 
Inhibit Timer feature that prevents a node from producing data too often, and thus using too much network 
bandwidth. The production inhibit timer determines the amount of time the node must remain quiet after pro-
ducing data to the network.

Figure 25 COS/Cyclic I/O Connections
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3.1.17.4. Multicast Polled I/O Connection
This connection is similar to the regular I/O poll except that all of the slaves belonging to a multicast group 
consume the same output data from the master. Each slave responds with its own reply data. A unique aspect 
of this connection is that the master picks the CAN ID from one of the slaves in the multicast group and must 
then set the consumed CAN ID in each of the other slaves to that same value. If, during runtime, that slave’s 
connection times out, the master must either stop producing its multicast poll command or pick another slave in 
the group and reset the command CAN ID in all the remaining slaves in the group to that value before sending 
another Multicast Poll Command.

3.1.17.5. I/O Data Sharing
Due to the inherent broadcast nature of all CAN frames, applications can be set up to “listen” to the data 
produced by other applications. Such a “listen only” mode is not described in the DeviceNet specification, but 
some vendors have created products that do exactly that, e.g., “shared inputs” in Allen-Bradley I/O Scanners.

3.1.17.6. Typical Master/Slave Start Sequence
Typically, starting up a DeviceNet Network with an I/O Scanner and a set of slaves is executed as follows:

	 - �All devices run their self-test sequence and then try to go online with the algorithm described in Section 
3.1.10. Any device that uses an autobaud mechanism to detect the baud rate of a network has to wait 
with its Duplicate Node ID Message until it has seen enough CAN frames to detect the correct baud rate;

	 - �Once online, slave devices will remain silent, except to defend their MAC ID, until their master allocates 
them;

	 - �Once online, a master will try to allocate each slave configured into its scan list by running the following 
sequence of messages:

		  • �Try to open a connection to the slave using a UCMM Open Message;

		  • �If successful, the master can then use this connection for further communication with the slave (the 
device is a Group 2 Server);

		  • �If not successful, the master will try again after a minimum wait time of one second;

		  • �If unsuccessful again, the master will try to allocate the slave using the Group 2 Only Unconnected 
Explicit Request Message (at least for explicit messaging) after a minimum wait time of one second; 

		  • �If successful, the master can then use this connection for further communication with the slave (the 
device is a Group 2 Only Server);

		  • �If not successful, the master will try again after a minimum wait time of one second;

		  • �If unsuccessful again, the master will start over with the UCMM Message after a minimum wait time of 
one second. This process will carry on indefinitely or until the master has allocated the slave.
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	 - �Once the master has allocated the slave, it may carry out some identity verification to see whether it is 
safe to start I/O messaging with the slave. The master also may apply further configuration to the connec-
tions it has established, e.g., setting the explicit messaging connection to “Deferred Delete”;

	 - �Setting the EPR value(s) brings the I/O connection(s) to the Established State so that I/O messaging can 
commence.

3.1.17.7. QuickConnect Connection Establishment 
DeviceNet also allows an optional method of connection establishment known as QuickConnect. This was designed 
to provide the same level of protection against duplicate MAC IDs, but to do so in a much shorter time period, allowing 
connections to be established in a fraction of the time they normally take. This method is useful in applications where 
nodes are added to an operating network, and the time required for establishing connections directly impacts produc-
tivity. For example, in robotic applications, the end-of-arm electronics are often changed out when a new item enters its 
workspace. These electronics need to be operational very quickly to avoid cycle time delays.

The QuickConnect process includes all the same steps as the typical startup process, but most of them are 
done in parallel rather than in sequence. As a result, the device self-check and Duplicate MAC ID Check pro-
cesses begin immediately, and the node goes online almost simultaneously. A failure of the device self-test or a 
duplicate MAC ID indication causes the device to remove itself from the bus.

In order for applications to benefit fully from this method, QuickConnect must be implemented in both the 
master and the slave. This feature is selectable through an EDS entry, and by default, is disabled in nodes 
that support it.

3.1.17.8. Master/Slave Summary
Device manufacturers can easily support the predefined master/slave connection set by using simple BasicCAN 
controllers. Software screening of the CAN Identifier generally is not necessary, which enables the use of low-
cost, 8-bit controllers. This may represent an advantage as far as the devices are concerned but entails some 
disadvantages for the system design.

Group 2 Only (i.e., UCMM incapable) devices permit only one explicit messaging connection between client 
(master) and server (slave), whereas UCMM capable devices can maintain explicit messaging connections with 
more than one client at the same time.

If a device wants to communicate with one of the allocated slaves that does not support UCMM, the master 
recognizes this situation and sets up a communication relationship with the requestor instead. Any communica-
tion between the requestor is then automatically routed via the master. This is called the Proxy function. Since 
this puts an additional burden on the master and on network bandwidth, it is recommended that slave devices 
support UCMM.

Although not explicitly defined in The DeviceNet Specification, DeviceNet masters can, under certain conditions, 
automatically configure their scan lists and/or the devices contained in their scan lists. This functionality simply 
makes use of the explicit messaging capabilities of masters and slaves that allows the master to read from a 
slave whatever information is required to start an I/O communication and to download any configurable param-
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eters that have been communicated to the master via EDS. This functionality facilitates the replacement of even 
complex slave devices without the need for a tool, dramatically reducing system downtime.

3.1.18. Device Profiles
DeviceNet devices may utilize any of the device profiles described in the CIP Networks Library. As of the publi-
cation date of this book, no DeviceNet-specific profiles have been defined.

3.1.19. Configuration
DeviceNet devices typically come with Electronic Data Sheets (EDS) as described in chapter 2.7. EDS files for 
DeviceNet devices can make full use of all EDS features, but they do not necessarily contain all sections. Typical 
DeviceNet devices contain (apart from the mandatory sections) at least an IO_Info section.

This section specifies which types of master/slave connections are supported and which one(s) should be en-
abled as defaults. It also tells which I/O connections may be used simultaneously.

An EDS also may contain individual parameters and/or a configuration assembly with a complete description of 
all parameters within this assembly. A full description of what can be done in DeviceNet EDS files would go well 
beyond the scope of this book. For available materials on this topic that go into more detail see [41], [42].

3.1.20. Conformance Test
See chapter 6 of this publication for information on conformance testing.

3.1.21. Tools
Tools for DeviceNet networks can be divided into three groups:

	 - �Physical layer tools are tools (hardware and/or software) that verify the integrity and conformance of the 
physical layer or monitor the quality of the data transmission;

	 - �Configuration tools are software tools capable of communicating with individual devices for data monitor-
ing and configuration purposes. They can range from very basic software operating on handheld devices 
to powerful PC-based software packages used to configure complete networks. Most configuration tools 
are EDS-based; however, more complex devices like I/O Scanners tend to have their own configuration 
applets that are only partially based on EDS files. Some of these tools support multiple access paths to 
the network, e.g., via Ethernet and suitable routing devices, and thus allow remote access. High-level 
tools also actively query the devices on the network to identify them and monitor their “health”;

	 - �Monitoring tools typically are PC-based software packages that can capture and display CAN frames on 
the network. A raw CAN frame display may be good enough for some experts, but using a tool that allows 
both raw CAN display and DeviceNet interpretation of the frames is recommended.

For a typical installation, a configuration tool is all that is needed. However, to ensure that the network is 
operating reliably, verification with a physical layer tool is highly recommended. Experience shows that the 
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overwhelming majority of DeviceNet network problems are caused by inappropriate physical layer installation. 
Protocol monitoring tools are used primarily to investigate interoperability problems and to assist during the 
development process. Turn to the ODVA Marketplace on the ODVA website to access a list of vendors that 
provide tools for DeviceNet.

3.1.22. Advice for Developers
Before starting any DeviceNet product development, the following issues should be considered in detail:

	 - �What functionality does the product require today and in future applications?

		  • �Slave functionality;

		  • �Group 2 Server vs. Group 2 Only Server.

		  • �Master functionality;

		  • �Combination of the above.

	 - �What are the physical layer requirements? Is IP 65/67 required or is IP 20 good enough?

	 - �What type of hardware should be chosen for this product?

	 - �What kind of firmware should be used for this product? Will a commercially available communication stack 
be used?

	 - �Will the development of hardware and/or software be done internally or will it be designed by an outside 
company?

	 - �What are the configuration requirements?

	 - �What design and verification tools should be used?

	 - �What kind of configuration software should be used for this product? Will a commercially available soft-
ware package be used, i.e., is an EDS adequate to describe the device or is custom software needed?

	 - �When and where will the product be tested for conformance and interoperability?
	 - �What is an absolute must before my products can be placed on the market (i.e., own the specification, 

have the company’s own vendor ID, have the product conformance tested)?

A full discussion of these issues goes well beyond the scope of this publication, for more information see [43].
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3.1.23. DeviceNet Summary
Since its introduction in 1994, DeviceNet has been used successfully in tens of millions of nodes in many differ-
ent applications. It is a de facto standard in many countries, which is reflected in several national and interna-
tional standards [25], [29], [30]. Due to its universal communication characteristics, it is one of the most versatile 
networks for low-end devices. While optimized for devices with small amounts of I/O, it can easily accommo-
date larger devices as well. Powerful EDS-based configuration tools allow easy commissioning and configura-
tion of even complex devices without the need to consult manuals.

With the introduction of CIP Safety on DeviceNet, many machine-level applications that previously required a set 
of dedicated networks today can be accommodated on a single DeviceNet network.

Finally, as a member of the CIP family of networks, DeviceNet can be combined into an overall CIP Network 
structure that allows seamless communication among CIP Networks, as if they were only one network.

3.2. ControlNet

3.2.1. Introduction
Introduced in 1997, ControlNet is a deterministic digital communications network that provides high-speed 
transport of time-critical I/O and explicit messaging data – including upload/download of programming and 
configuration data and peer-to-peer messaging – on a single physical media link. Each device and/or controller 
is a node on the network.

ControlNet is a producer/consumer network that supports multiple communication hierarchies and message 
prioritization. ControlNet systems offer a single point of connection for configuration and control by supporting 
both implicit (I/O) and explicit messaging. ControlNet’s time-based message scheduling mechanism provides 
network devices with deterministic and predictable access to the network while preventing network collisions. 
This scheduling mechanism allows time-critical data, which is required on a periodic, repeatable and predict-
able basis, to be produced on a predefined schedule without the loss of efficiency associated with continuously 
requesting, or “polling”, for the required data.

3.2.2. Relationship to Standards
Like other CIP Networks, ControlNet follows the Open Systems Interconnection (OSI) model, an ISO standard 
for network communications that is hierarchical in nature. Networks that follow this model define all necessary 
functions, from physical implementation up to the protocol and methodology to communicate control and infor-
mation data within and across networks.
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Figure 26 shows the relationship between CIP and ControlNet.

The ControlNet adaptation of CIP is described in Volume 4 of the CIP Networks Library [4]. All other features are 
based on CIP. ControlNet is also described in international standards, e.g., [31].

3.2.3. ControlNet Features
ControlNet is a high-speed deterministic industrial communication system with the following features:

	 - �Trunkline/dropline configuration (copper media), star configuration (optical media);

	 - �Support for media redundancy;

	 - �Support for up to 99 nodes;

	 - �Node insertion or removal while the network is up and running;

	 - �Use of sealed or open-style connectors;

	 - �Fixed baudrate (5 Mbaud).

Figure 26 Relationship Between 
CIP and ControlNet
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3.2.4. ControlNet Physical Layer
The physical layer of ControlNet has been designed specifically for this network; it does not reuse any existing 
open technology. The basis of the physical layer is a 75 Ω coaxial trunkline (typically of RG-6 type cable) terminat-
ed at both ends with 75 Ω terminating resistors. To reduce impedance mismatch, all ControlNet devices are con-
nected to the network through special taps that consist of a coupling network and a specific length of dropline 
(1 m). There is no minimum distance requirement between taps, but, since every tap introduces some signal 
attenuation, each tap reduces the maximum length of the trunkline by 16.3 m. This results in a full length trunkline 
of 1,000 m with only two taps at the ends while a fully populated physical network with 48 taps allows a trunkline 
length of 250 m (see Figure 27).

This physical layer limitation is addressed by including repeaters that can increase the network size without low-
ering the speed. Therefore, if a network is to be built with a higher number of nodes (up to 99 nodes are pos-
sible) or with a topology that goes beyond the single trunkline limitations, repeaters can be used to extend the 
bus. It’s possible to create any type of topology: tree, star or linear bus. Even a ring topology is possible using a 
special type of repeater. Repeaters for fiber optic media can be used either to further increase the system size or 
to allow isolation of network segments in harsh EMC environments or for high voltage applications.

The number of repeaters between any two nodes was initially limited to five, but further technology develop-
ments now allow up to 20 repeaters in series. However, regardless of the media technology used, the overall 
length of a ControlNet system (the distance between any two nodes on the network) is still limited by propaga-
tion delay. With currently available media, this translates into approximately 20 km.

To better accommodate industry requirements, ControlNet supports redundant media, allowing bumpless 
transfer from primary to secondary media or vice versa if one of them should fail or deteriorate. Developers are 
encouraged to support this redundant media feature in their designs. For cost-sensitive applications, less ex-
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pensive device variants may then be created by populating one channel only.

Another feature often used in the process industry is the capability of running ControlNet systems into ar-
eas with an explosion hazard. ControlNet is fully approved to meet worldwide standards for intrinsic safety 
(explosion protection).

Copper media uses BNC type connectors for IP 20 type applications and TNC type connectors for IP 67 pro-
tection. Devices also may implement a network access port (NAP). This feature takes advantage of the repeater 
function of the ControlNet ASICs. It uses an additional connector (RJ-45) with RS 422-based signals that pro-
vides easy access to any node on the network for configuration devices.

The signal transmitted on the copper media is a 5-Mbit/s Manchester-encoded signal with an amplitude of up to 
9.5 V (pk-pk) at the transmitter that can be attenuated down to 510 mV (pk-pk) at the receiving end. The specifi-
cation provides reference transmitting and receiving circuits.

3.2.5. Frame Structure
Every frame transmitted on ControlNet has the format of the MAC frame shown in Figure 28.

Within every MAC frame, a field of up to 510 bytes is available for transmitting data or messages. This field may 
be populated with one or several Lpackets (link packets). These Lpackets carry the individual CIP messages (I/O 
or Explicit). Specialized Lpackets are used for network management. Since all nodes always listen to all MAC 
frames, they have no problem consuming any of the Lpackets in a frame that is unicast, multicast or broadcast 
in nature. This feature allows fine-tuned multicasting of small amounts of data to different sets of consumers 
without much overhead.

There are two types of Lpacket formats: fixed tag and generic tag. Fixed tag Lpackets are used for unconnect-
ed messaging and network administration packets, while the generic tag Lpackets are used for all connected 
messaging (I/O and Explicit).

Figure 28 MAC Frame Format
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Figure 29 shows the format of a fixed tag Lpacket. By including the destination MAC ID, this format reflects the 
fact that these Lpackets are always directed from the requesting device (sending the MAC frame) to the target 
device (the destination MAC ID). The service byte within a fixed tag Lpacket does not represent the service of 
an explicit message, but a service type on a different level, since the fixed tag Lpacket format can be used for a 
variety of actions, such as network administration.

Figure 30 shows the format of a generic tag Lpacket. The size byte specifies the number of words within the 
Lpacket, while the control byte gives information on what type of Lpacket this is. The 3-byte Connection Identifi-
er specifies which connection this Lpacket belongs to. These three bytes are the three lower bytes of the 4-byte 
connection ID specified in the Forward_Open message; the uppermost byte is always zero. For a device that 
receives the MAC frame, the connection ID indicates whether to ignore the Lpacket (the device is not part of the 
connection), to consume the data and forward it to the application (the device is an end point of this connection) 
or to forward the data to another network (the device acts as a router in a routed connection).

3.2.6. Protocol Adaptation
ControlNet can use all features of CIP. The ControlNet frame is big enough that fragmentation is rarely required 
and thus is only provided by application-specific services that might require it. Since ControlNet is not used in 
very simple devices, no scaling is required.

Figure 29 Fixed Tag Lpacket Format	
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3.2.7. Indicators and Switches
ControlNet devices must be built with Device Status and Network Status indicators as described in the spec-
ification. Devices may have additional indicators which must not carry any of the names of those described in 
the specification.

Devices may be built with or without switches or other directly accessible means for configuration. If switches 
for the MAC ID exist, then certain rules apply regarding how these values must be used at power up and during 
the operation of the device.

3.2.8. Additional Objects
Volume 4 defines three additional objects: the ControlNet object, the keeper object and the scheduling object.

3.2.8.1. ControlNet Object (Class ID: 0xF0)
The ControlNet object contains a host of information about the state of the device’s ControlNet interface, among 
them diagnostic counters, data link and timing parameters and the MAC ID. A ControlNet object is required for 
every physical layer attachment of the device. A redundant channel pair counts as one attachment.

3.2.8.2. Keeper Object (Class ID: 0xF1)
The keeper object (not required for every device) holds (for the network scheduling software) a copy of the 
Connection Originator schedule data for all Connection Originator devices using the network. Every Control-
Net Network with scheduled I/O traffic must have at least one device with a keeper object (typically, a PLC or 
another Connection Originator). If there are multiple keeper objects on a network, they perform negotiations to 
determine which Keeper is the Master Keeper and which Keeper(s) perform Backup Keeper responsibilities. The 
Master Keeper is the Keeper actively distributing attributes to the nodes on the network. A Backup Keeper is 
one that monitors Keeper-related network activity and can transition into the role of Master Keeper should the 
original Master Keeper become inoperable.

3.2.8.3. Scheduling Object (Class ID: 0xF2)
The scheduling object is required in every device that can originate an I/O messaging connection. Whenev-
er a network scheduling tool accesses a Connection Originator on a ControlNet Network, an instance of the 
scheduling object is created and a set of object-specific services is used to interface with this object. Once the 
instance is created, the network scheduling tool can then read and write connection data for all connections 
that originate from this device. After having read the connection data from all Connection Originators, the net-
work scheduling tool can calculate an overall schedule for the ControlNet Network and write this data back to all 
Connection Originators. The scheduling session is ended by deleting the instance of the scheduling object.

3.2.9. Network Access
ControlNet’s bus access mechanism allows full determinism and repeatability while still maintaining sufficient 
flexibility for various I/O message triggers and explicit messaging. This bus access mechanism is called Concur-
rent Time Domain Multiple Access (CTDMA); it is illustrated in Figure 31.
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The time axis is divided into equal intervals called Network Update Time (NUT). Each NUT is subdivided into the 
Scheduled Service Time, the Unscheduled Service Time and the Guardband Time.

Figure 32 shows the function of the Scheduled Service. Every node up to, and including, the SMAX node (max-
imum node number participating in the Scheduled Service) has a chance to send a message within the Sched-
uled Service. If a particular node has no data to send, it will send a short frame to indicate that it is still alive. If a 

Figure 31 Media Access through CTDMA (Concurrent Time Domain Multiple Access)	
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node fails to send its frame, the next-higher node number will step in after a very short, predetermined waiting 
time. This process ensures that a node failure will not lead to an interruption of the NUT cycle.

Figure 33 shows the function of the Unscheduled Service. Since this service is designed for non-time-critical 
messages, only one node is guaranteed access to the bus during the Unscheduled Service Time. If there is time 
left, the other nodes (with higher node numbers) will also get a chance to send. As with the Scheduled Service 
Time, if a node fails to send during its turn, the next node will step in. The node number that is allowed to send 
first within the Unscheduled Service Time is increased by one in each NUT. This guarantees an equal chance 
to all nodes. When the node sequencing within a NUT reaches the maximum value, known as UMAX, it wraps 
around to node 1, and the sequence resumes.

These two service intervals, combined with the Guardband, guarantee determinism and repeatability while still 
maintaining sufficient freedom to allow for unscheduled message transmissions, e.g., for parameterization.

3.2.10. Network Startup
After power-on, every ControlNet device goes through a process of accessing the ControlNet communication net-
work and learning the current NUT and other timing requirements. This is a fairly complex process typically handled 
by commercially available ControlNet ASICs. It is beyond the scope of this book to describe the details here.

3.2.11. Explicit Messaging
Explicit messages on ControlNet, unlike those on DeviceNet, can be sent either connected or unconnected; 
both are transmitted within the unscheduled part of the NUT. Connected explicit messaging requires setting up 
a connection (see chapter 3.2.13) before messages are exchanged. This means that all resources required for 

Figure 33 Unscheduled Service	
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managing the connection are reserved for this purpose as long as the connection exists, which allows more 
timely responses to message requests. This is very useful when the application requires periodic explicit re-
quests. Most explicit messages also can be sent unconnected, but this mechanism makes use of generally 
limited resources in nodes that sometimes can be highly utilized. For this reason, unconnected explicit mes-
saging should be used only when the application requires very irregular and infrequent request intervals. Every 
part of an explicit message (request, response, acknowledgements) is wrapped into an Lpacket using the fixed 
tag Lpacket format for unconnected explicit messaging (see Figure 29) and the generic tag Lpacket format for 
connected explicit messaging (see Figure 30). The service/class/instance/attribute fields (see chapter 2.3) of the 
explicit message are contained in the link data field.

3.2.12. I/O Messaging
ControlNet I/O messaging is accomplished using connections, and always takes place in the scheduled part of 
the NUT. Only one MAC frame may be transmitted by any device within its time slot, but this MAC frame may 
contain multiple Lpackets so that data can be sent to multiple nodes in one NUT. The individual Lpackets may 
be consumed by one node only or by multiple nodes if they are set up to consume the same data.

I/O messages use the generic tag Lpacket format (see Figure 30). The link data field contains the I/O data 
prefixed with a 16-bit sequence count value for the packet. Run/Idle can be indicated within a prefixed Re-
al-Time Header or by sending the data packet (Run) or no data packet (Idle). The method used is indicated in 
the connection parameters of the Connection Manager section of the EDS. However, only the Real-Time Header 
method has been used for ControlNet up to now.

3.2.13. Connection Establishment
All connections on ControlNet are established using a UCMM Forward_Open message (see Section 2.3). 

3.2.14. Device Classes
Four classes of device functionality are built with CIP. While they are not explicitly defined in the specification, 
they are useful for distinguishing among several classes of devices. The four classes are described here:

	 - �The minimal device function is that of an explicit message Server, which is used for explicit messaging 
applications only and acts as a target for Unconnected and (optionally) connected explicit messages, e.g., 
for program upload/download, data collection, status monitoring, etc.;

	 - �The next device class is an I/O Server, which adds I/O messaging support to an explicit message Serv-
er device and acts as a target for both Explicit and I/O messages, e.g., simple I/O Devices, Pneumatic 
Valves, AC Drives. These devices are also called I/O Adapters;

	 - �Another device class is an explicit message client, which adds client support to explicit message Server 
applications and acts as a target and as an originator for explicit messaging applications, e.g., computer 
interface cards, HMI devices;

	 - �The most powerful type of device is an I/O Scanner, which adds I/O message origination support to the 
functionality of all the other device classes, and which acts as a target and as an originator for Explicit and 
I/O messages, e.g., PLCs, I/O Scanners.
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3.2.15. Device Profiles
ControlNet devices may utilize any device profiles described in the CIP Networks Library. As of the publication 
date of this book, no ControlNet-specific profiles have been defined.

3.2.16. Configuration
ControlNet devices typically come with Electronic Data Sheets (EDS) as described in Section 2.6. For EDS-
based configuration tools, the EDS should contain a Connection Manager section to describe the details of the 
connections that can be made into the device. This section basically mirrors the contents of the Forward_Open 
message that a Connection Originator would send to the device. Multiple connections can be specified within 
an EDS, then one or more can be chosen by the configuration tool.

An EDS may also contain individual parameters and/or a configuration assembly with a complete description 
of all parameters within this assembly. In many applications, the configuration assembly is transmitted as an 
attachment to the Forward_Open message.

3.2.17. Conformance Test
See chapter 6 of this publication for information on conformance testing.

3.2.18. Tools
Tools for ControlNet Networks can be divided into three groups:

	 - �Physical layer tools are tools (hardware and/or software) that verify the integrity and conformance of the 
physical layer or monitor the quality of the data transmission;

	 - �Configuration tools are software tools capable of communicating with individual devices for data monitor-
ing and configuration purposes. Most configuration tools are EDS-based; however, more complex devices 
like I/O Scanners tend to have their own configuration applets that are only partially based on EDS files. 
Some of these tools support multiple access paths to the network, e.g., via Ethernet and suitable routing 
devices, and thus allow remote access. High-level tools also actively query the devices on the network to 
identify them and monitor their health. Configuration tools also may be integrated into other packages like 
PLC programming software;

	 - �Monitoring tools typically are PC-based software packages that can capture and display the ControlNet 
frames on the network. A raw ControlNet frame display may be good enough in some instances, but 
using a tool that can display both raw ControlNet frames and interpreted frames is recommended.

For a typical installation, a configuration tool is all that is needed. However, to ensure the network is operating 
reliably, testing with a physical layer tool is highly recommended. Experience shows that the overwhelming ma-
jority of ControlNet network problems are caused by inappropriate physical layer installation. Protocol monitoring 
tools are mainly used to investigate interoperability problems and to assist during the development process.

Turn to the ODVA Marketplace on the ODVA website to access a list of vendors that provide tools for ControlNet.
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3.2.19. Advice for Developers
Before any development of a ControlNet product is started, the following issues should be considered in detail:

	 - �What functionality (Device Classes, see chapter 3.2.14) does the product require today and in future appli-
cations?

			   • Explicit messaging server only;

			   • I/O Adapter functionality;

			   • Explicit messaging client;

			   • I/O scanner functionality.

	 - �What are the physical layer requirements? Is IP 65/67 required or is IP 20 good enough?

	 - �Will the development be based on commercially available hardware components and software packages 
(recommended) or designed from scratch (possible but costly)?

	 - �What are the configuration requirements?

	 - �What design and verification tools should be used?

	 - �When and where will the product be tested for conformance and interoperability?

	 - �What is an absolute must before products can be placed on the market (own the specification, have the 
company’s own vendor ID, have the product conformance tested)?

Rockwell Automation has published a comprehensive developer’s handbook that assists vendors in developing 
products, see [44]. ControlNet chipsets and associated software packages are available from Rockwell Automa-
tion. Turn to the ODVA website for a list of companies that can support ControlNet developments.

3.2.20. ControlNet Summary
Since its introduction in 1997, ControlNet has been used successfully in millions of nodes in many different applica-
tions. It is the network of choice for many high speed I/O and PLC interlocking applications. Like DeviceNet, ControlNet 
has become an international standard [31]. Due to its universal communication characteristics, it is one of the most 
powerful controller-level networks available.

ControlNet’s greatest strengths are its media redundancy and its full determinism and repeatability. These 
strengths make it ideally suited for many applications that require media redundancy and also for many high-
speed applications, in which ControlNet maintains full explicit messaging capabilities without compromising its 
real-time behavior.

Finally, as a member of the CIP family of networks, ControlNet can be combined into an overall CIP Network 
structure that allows seamless communication among CIP Networks, just as if they were only one network.
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3.3. EtherNet/IP

3.3.1. Introduction
Introduced in 2000, EtherNet/IP is another member of the CIP Family. Using CIP as its upper-layer protocol, 
EtherNet/IP extends the application of Ethernet TCP/IP to the plant floor. EtherNet/IP can coexist with any other 
protocol running on top of the standard TCP/UDP Transport Layer, and with other CIP Networks. EtherNet/IP – 
CIP plus Internet and Ethernet standards – provides a pure, unmodified, standards-based Ethernet solution for 
interoperability among manufacturing enterprise networks, and it enables Internet and enterprise connectivity 
anywhere, anytime utilizing commonly available switches. The “IP” in EtherNet/IP stands for the “Industrial Proto-
col” in CIP; this is not to be confused with “IP” in TCP/IP which stands for “Internet Protocol”.

Due to the length of Ethernet frames and the typical multi-master structure of Ethernet networks, there are no 
particular limitations in the EtherNet/IP implementation of CIP. Basically, all that is required is a mechanism to 
encode CIP messages into Ethernet frames.

3.3.2. Relationship to standards
Like other CIP Networks, EtherNet/IP follows the Open Systems Interconnection (OSI) model, an ISO standard 
for network communications that is hierarchical in nature. Networks that follow this model define all necessary 
functions, from physical implementation up to the protocol and methodology to communicate control and infor-
mation data within and across networks.

Figure 34 shows the relationship between CIP and EtherNet/IP.

Figure 34 Relationship Between 
CIP and EtherNet/IP
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The EtherNet/IP adaptation of CIP is described in Volume 2 of the CIP Networks Library. All other features are 
based on CIP. This volume defines how CIP is adapted for use on Ethernet. An encapsulation mechanism (see 
chapter 3.3.11) is defined for EtherNet/IP specifying how I/O and explicit messages are carried in Ethernet 
frames. The well-known TCP/IP protocol is used for encapsulating explicit messages, while UDP/IP is used for 
encapsulating I/O messages. Since the commonly implemented TCP/IP and UDP/IP protocol stacks are used 
for encapsulation, many applications will not require extra middleware for this purpose.

Ethernet has its roots in the office computing environment, which is not traditionally concerned with determinism 
like industrial applications are. However, with the proper selection and configuration of infrastructure devices 
(see chapter 3.3.21) using fast data rates with full duplex communications there will be no collisions or lost 
packets, giving Ethernet a level of determinism that is more than adequate for use in industrial control applica-
tions. Additionally, extensions to CIP like CIP Sync and CIP Motion (see Section 5.1) allow EtherNet/IP to be 
used in highly synchronous and deterministic applications like coordinated drives and motion control.

EtherNet/IP is also described in international standards, i.e., the IEC fieldbus standards, see [27], [31].

3.3.3. EtherNet/IP Features
EtherNet/IP is a communication system built on standard, unmodified Ethernet with the following features:

	 - �Built on and compliant with the relevant Ethernet standards, not just compatible with them;

	 - �Fully independent of data rate: 10, 100, 1000 Mbit/s;

	 - �Systems can be built with standard infrastructure;

	 - �Virtually unlimited number of nodes in a network;

	 - �Networks can be structured into subnets with IP routers;

	 - �Full support of communication across subnets since EtherNet/IP uses IP addressing for all communication;

	 - �Non-realtime communication and realtime communication can coexist in the same subnet;

	 - �Support for coordinated drives and motion control;

	 - �Support for Device Level Ring (DLR) which provides single fault tolerance through media redundancy;

	 - �QuickConnect for devices that are frequently removed from and added to the network, e.g., robot tools;

	 - �Coexistence with other upper-layer protocols, such as HTTP, FTP, VOIP etc.

3.3.4. EtherNet/IP Physical Layer
Since EtherNet/IP takes the Ethernet protocol to the factory floor, recommendations are made in Volume 2 [2] 
regarding grounding, isolation and cable and connector construction that are designed to make EtherNet/IP 
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successful in a typical factory automation environment. These changes do not affect the actual signaling or 
interoperability with standard Ethernet products, but simply make devices more suitable for harsher industrial 
environments. As a result, two levels of performance criteria are defined:

	 - �The COTS (Commercial Off The Shelf) EtherNet/IP Level provides basic Ethernet connectivity. This level 
includes the well-known RJ-45 type Ethernet connector but specifies topology constraints (e.g., up to 100 
m) and cabling requirements through references to specific IEEE, ANSI/TIA/EIA standards. Such devices 
are typically suited for IP 20 applications;

	 - �The Industrial EtherNet/IP Level goes beyond the COTS Level by specifying minimum environmental, ca-
bling and connector requirements that include IEC, ANSI/TIA/EIA standards. Connectors required for the 
Industrial EtherNet/IP Level include an enhanced performance RJ-45 connector, a sealed RJ-45 connec-
tor as well as a more compact, D-coded M 12-4 connector. The sealed RJ-45 and M 12 connectors can 
achieve an IP 67 rating.

Cat 5E or Cat 6 shielded or unshielded cables are recommended for EtherNet/IP. The use of shielded cables is 
specifically recommended in applications where adjacent material, such as metal cable ducts, may have sub-
stantial influence on the characteristics of the cable. In accordance with IEEE 802.3, copper media may be used 
only for distances up to 100 m. Fiber-optic media is recommended for longer distances. Fiber-optic media may 
also be advisable for applications with very high electromagnetic disturbances or high-voltage potential differ-
ences between devices.

ODVA has published a guideline for the installation of Ethernet media, see [15]. This topic is also covered by the 
international standard IEC 61784-5-2 [27].

3.3.5. Frame Structure
EtherNet/IP uses standard Ethernet TCP/IP and UDP/IP frames as defined by international standards [22], [47], 
[48], [50]. Therefore, no further frame details are described here.

3.3.6. Protocol Adaptation
EtherNet/IP can use all features of CIP. The Ethernet frame is big enough that fragmentation is rarely required. If 
it is required, fragmentation is automatically handled by IP fragmentation provided by TCP/IP and UDP/IP. Since 
EtherNet/IP is not expected to be used in very simple devices, no further scaling is required.

3.3.7. Indicators and Switches
EtherNet/IP devices that need to conform to the Industrial EtherNet/IP Level must have the two indicators set 
forth in the specification: Module Status and Network Status. Devices may have additional indicators which 
must not carry any of the names of those described in the specification.

Devices may be built with or without switches or other manual means for configuration.
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3.3.8. Additional Objects
Volume 2 defines the following 11 additional objects that are found only on EtherNet/IP devices. Most of 
these objects are only required when the feature they pertain to are implemented. Exceptions to this are 
noted where appropriate. 

3.3.8.1. TCP/IP Interface Object (Class ID: 0xF5)
The TCP/IP interface object provides a mechanism for configuring a device’s TCP/IP network interface. Ex-
amples of configurable items include the device’s IP address, network mask and gateway address. Every 
EtherNet/IP must have at least one instance of this class.

3.3.8.2. Ethernet Link Object (Class ID: 0xF6)
The Ethernet Link object maintains configuration parameters, various error counters and status information for 
the Ethernet IEEE 802.3 communications interface. Each device has exactly one instance of the Ethernet Link 
object for each Ethernet IEEE 802.3 communications interface.

3.3.8.3. Device Level Ring (DLR) Object (Class ID: 0x47)
The DLR object manages all data and behavior associated with the DLR functionality of a device. For further 
details on DLR see chapter 3.3.23.2 of this publication.

3.3.8.4. QoS Object (Class ID: 0x48)
The QoS object manages all data and behavior associated with the QoS (Quality of service) functionality of a 
device. It includes the settings for DSCP in the IP header and the Frame Prioritization settings for the Ethernet 
header. If the device supports DLR, then this class must be implemented, too.

3.3.8.5. Base Switch Object (Class ID: 0x51)
The base switch object provides the CIP application-level interface to basic status information for a Managed 
Ethernet switch device. Devices shall implement no more than one instance of the base switch object.

3.3.8.6. Simple Network Management (SNMP) Object (Class ID: 0x52)
The SNMP object provides parameters used to configure aspects of the SNMP Agent in the device.

3.3.8.7. Power Management Object (Class ID: 0x53)
The power management object defines a Sleeping state and a Paused state. The method to trigger the transi-
tion from the Sleeping stat to the Paused state is network adaptation-specific.

3.3.8.8. RSTP Bridge Object (Class ID: 0x54)
The RSTP bridge object provides the configuration and diagnostic interface for the RSTP protocol at the bridge 
level. For further details on the use of RSTP, see Section 3.3.24 of this publication
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3.3.8.9. RSTP Port Object (Class ID: 0x55)
The RSTP port object provides a configuration and diagnostic interface for the RSTP protocol at the port level. 
For further details on the use of RSTP, see Section 3.3.24 of this publication.

3.3.8.10. Parallel Redundancy Protocol (PRP) Object (Class ID: 0x56)
The Parallel Redundancy Protocol (PRP) object provides a configuration and diagnostic interface for PRP pa-
rameters, if implemented in the product.

3.3.8.11. PRP Nodes Table Object (Class ID: 0x57)
The PRP node table object keeps the record of all PRP capable nodes that have been detected on the network.

3.3.9. IP Address Assignment
Since the initial development of TCP/IP, numerous methods for configuring a device’s IP address have evolved. 
Not all of these methods are suitable for industrial control devices. In the office environment, for example, it is 
common for a PC to obtain its IP address via DHCP (Dynamic Host Configuration Protocol), meaning that it can 
potentially acquire a different address each time the PC reboots. This is acceptable because the PC is typically a 
client device that only makes requests, so there is no impact if its IP address changes.

However, for an industrial control device that is a target of communication requests, the IP address cannot 
change at each power up. A PLC, for example, must be at the same address each time it powers up.

In addition, the only interface common to all EtherNet/IP devices is an Ethernet communications port. Some de-
vices may also have a serial port, a user interface display, hardware switches or other interfaces, but these are 
not universally shared across all devices. Since Ethernet is the common interface, the initial IP address should at 
least be configurable over Ethernet.

The EtherNet/IP Specification, via the TCP/IP interface object, defines a number of ways to configure a device’s 
IP address. A device may obtain its IP address via BOOTP (Bootstrap Protocol), via DHCP or via an explicit 
Set_Attribute_Single or Set_Attributes_All service. None of these methods is mandated however. As a result, 
vendors could choose different methods for configuring IP addresses.

From the user’s perspective, it is desirable for vendors to support some common mechanism(s) for IP address 
configuration. The current ODVA recommendations on this subject can be downloaded from the ODVA website [9].

3.3.10. Address Conflict Detection (ACD)
Since IP addresses are often assigned by human interaction or as a default private address by the device man-
ufacturer (e.g., 192.168.1.1), it is not uncommon to find multiple devices on the same network with the same 
IP address. This situation is undesirable; therefore, duplicate IP address detection and the subsequent address 
conflict resolution has been defined for EtherNet/IP. The ACD mechanism deployed in EtherNet/IP conforms to 
the IETF RFC 5227 [62]. Support for ACD is optional; however, any EtherNet/IP device that supports it, must 
follow the method described in Volume 2, Appendix F of The EtherNet/IP Specification.
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3.3.11. EtherNet/IP Encapsulation
EtherNet/IP is based entirely on existing TCP/IP and UPD/IP technologies and uses them without any modification. 
TCP/IP is mainly used for the transmission of explicit messages while UDP/IP is used mainly for I/O messaging.

The encapsulation protocol defines two reserved TCP/UDP port numbers. All EtherNet/IP devices accept at 
least 2 TCP connections on TCP port number 0xAF12. This port is used for all TCP-based explicit messaging, 
either connected or unconnected. It is also used for the encapsulation protocol commands that are employed 
when setting up communications between nodes. Some encapsulation commands may also be sent to port 
0xAF12 via UDP datagrams.

Port 0x08AE is used by any devices that support EtherNet/IP’s I/O messaging over UDP. These messages can 
be sent either unicast or multicast by taking advantage of the multicast capabilities of IP. Multicast data flow 
makes more efficient use of the available bandwidth and provides for better data consistency across the system. 
Being connectionless, UDP is well suited to this purpose as connection management is handled by CIP.

3.3.11.1. General Use of the Ethernet frame
Since EtherNet/IP is completely based on Ethernet with TCP/IP and UDP/IP, all CIP-related messages sent on 
an EtherNet/IP network are Ethernet frames with an IP header (see Figure 35).

The Ethernet header, the IP header and the TCP or UDP headers are described through international standards 
(see chapter 3.3.5); therefore, details of these headers are mentioned only in The EtherNet/IP Specification when 
it is necessary to understand how they are used to carry CIP.

The encapsulation header contains a command which determines the meaning of the encapsulation data. Many 
commands specify the use of the so-called Common Packet Format. I/O messages sent in UDP frames do not 
use the encapsulation header, but they still follow the Common Packet Format.

3.3.11.2. Encapsulation Header and Encapsulation Commands
The overall encapsulation packet has the structure described in Figure 36.
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While the description of some of the encapsulation header details would go beyond the scope of this book, the 
command field requires more attention here. However, only those commands that are needed to understand the 
EtherNet/IP protocol are described, and their description only lists the main features.

3.3.11.2.1. ListIdentity Command
The ListIdentity command typically is sent as a broadcast UDP message to tell all EtherNet/IP devices to return 
a data set with identity information. This command is used by software tools to browse a network.

3.3.11.2.2. RegisterSession/UnRegisterSession Commands
These two commands are used to open and close an Encapsulation Session between two devices. Once a Ses-
sion is established, it is used to exchange more messages. Only one Session may exist between two devices.

The device receiving the RegisterSession request creates a Session Handle that it returns in the RegisterSession 
reply. This value is used to identify messages sent between the two devices that use this Session.

3.3.11.2.3. SendRRData/SendUnitData Commands
The SendRRData Command is used for unconnected explicit messaging, and the SendUnitData Command is 
used for connected explicit messaging. The device transmitting the SendRRData request creates a Sender Con-
text value that is returned with the reply. The SendUnitData does not use the Sender Context field.

3.3.11.2.4. Common Packet Format
The Common Packet Format is a construct that provides a way to structure the Encapsulation Data field for those 
Encapsulation commands that specify Encapsulation data. The Common Packet Format defines Items that rep-
resent different types of information to be exchanged between devices. If the command definition requires it, the 
Common Packet Format allows packing of multiple Items into one encapsulation frame, as shown in Figure 37.
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3.3.12. Use of the Encapsulation Data

3.3.12.1. Explicit Messaging

Explicit messages on EtherNet/IP can be sent either connected or unconnected. Connected explicit messag-
ing requires setting up a connection (see chapter 3.3.13) before messages are exchanged. This means that all 
resources required for managing the connection are reserved for this purpose as long as the connection exists, 
which allows for more timely responses to message requests. This is very useful in applications that require 
periodic explicit requests. Explicit messages also can be sent unconnected, but this mechanism makes use of 
generally limited resources in nodes that sometimes can be highly utilized. For this reason, unconnected ex-
plicit messaging should be used only when the application requires very irregular and infrequent request inter-
vals. Explicit messages on EtherNet/IP are sent with a TCP/IP header and use the SendRRData Encapsulation 
Command (unconnected) or the SendUnitData Encapsulation Command (connected). As an example, the full 
encapsulation of a UCMM request is shown in Figure 38.
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The Message Router Request Packet noted in the figure contains the CIP message request or response. This 
part of the packet follows the general format of explicit messages – the Message Router Request/Response 
Format – defined in Volume 1, Chapter 2 of the CIP Networks Library.

3.3.12.2. I/O Messaging
I/O messages on EtherNet/IP are sent with a UDP/IP header. No encapsulation header is required, but the mes-
sage still follows the Common Packet Format. See Figure 39 for an example.

The data field contains the I/O data prefixed with a 16-bit sequence count value for the packet. I/O data transmission 
without the sequence count value is possible, but it is only used for CIP Safety connections. Run/Idle can be indicated 
within a Real-Time Header or by sending the packet with I/O data (Run) or without I/O data (Idle). The method used is 
indicated in the connection parameters of the Connection Manager section of the EDS. The Real-Time Header method 
is recommended [10] for use on EtherNet/IP for interoperability reasons and this is what is shown in Figure 39.

I/O messages from the originator to the target are typically sent as UDP unicast frames, while those sent 
from the target to the originator can be sent as UDP multicast or unicast frames. Multicast frames allow other 
EtherNet/IP devices to listen to the input data. To avoid having these UDP multicast frames propagating too 
widely over the network, the use of switches that support IGMP Snooping is highly recommended. IGMP (Inter-
net Group Management Protocol [61]) is a protocol that allows the automatic creation of multicast groups. Using 
this functionality, the switch will automatically create and maintain a multicast group consisting of the devices 
that need to consume these multicast messages. Once the multicast groups have been established, the switch 
will direct such messages only to those devices that have subscribed to the multicast group of that message.

3.3.13. Connection Establishment
All connections on EtherNet/IP are established using a UCMM Forward_Open message (see chapter 2.3).

3.3.14. QuickConnect Connection Establishment
While most applications can wait several seconds until a connection is established, there are certain applica-
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tion scenarios that require a device to be operational with only a very short delay after the application of power. 
Typically, these are devices sitting on an exchangeable tool that a robot would pick up for certain manufacturing 
steps. In comparison to DeviceNet, EtherNet/IP devices are more complex and larger and more complex parts 
of the communication stack are typically implemented in software, so it will take more time to power up a de-
vice. The other additional complexity in EtherNet/IP is the TCP layer with a timeout behavior of its own. Further-
more, active infrastructure (switches) may take a long time to reboot. Under consideration of these conditions, 
the following method was developed for a fast establishment of I/O connections:

	 - �If more than one EtherNet/IP device is mounted onto the exchangeable tool, embedded infrastructure with 
defined start-up behavior must be used;

	 - �In preparation of a restart, every connection that participates in the QuickConnect application must be 
shut down using the Forward_Close service before disconnecting the device;

	 - �When the device has responded to the Forward_Close request, it closes the TCP connection with the I/O Scanner;

	 - �At the restart of any QuickConnect device, the I/O Scanner receives notification of power reapplication 
through a contact in the tool changer;

	 - �The I/O Scanner then waits for a predetermined time (described in the EDS) before a connection is rees-
tablished.

Using this methodology, startup times of less than 100 ms can be achieved with current technology; the first 
products are available on the market,

The full description of the QuickConnect functionality can be found in Appendix E of The EtherNet/IP Specification.

3.3.15. Device Classes
Four classes of device functionality are built with CIP. While they are not explicitly defined in the specification, 
they are useful for distinguishing among several classes of devices. The four classes are described here:

	 - �The minimal device function is that of an explicit message server, which is used for explicit messaging 
applications only and acts as a target for Unconnected and (optionally) connected explicit messages, e.g., 
for program upload/download, data collection, status monitoring, etc.;

	 - �The next device class is an I/O Server, which adds I/O messaging support to an explicit message serv-
er device and acts as a target for both Explicit and I/O messages, e.g., simple I/O Devices, Pneumatic 
Valves, AC Drives. These devices are also called I/O Adapters;

	 - �Another device class is an explicit message client, which adds client support to explicit message server 
applications and acts as a target and as an originator for explicit messaging applications, e.g., computer 
interface cards, HMI devices;

	 - �The most powerful type of device is an I/O Scanner, which adds I/O message origination support to the 
functionality of all the other device classes, and which acts as a target and as an originator for Explicit and 
I/O messages, e.g., PLCs, I/O Scanners.
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3.3.16. Device Profiles
EtherNet/IP devices may utilize any of the device profiles described in the CIP Networks Library. As of the publi-
cation date of this book, no EtherNet/IP-specific device profiles have been defined.

3.3.17. Configuration
EtherNet/IP devices typically come with Electronic Data Sheets (EDS) as described in Section 2.7. For EDS-
based configuration tools, the EDS should contain a Connection Manager section to describe the details of the 
connections that can be made into the device. This section basically mirrors what is contained in the Forward_
Open message that a Connection Originator would send to the device. Multiple connections can be specified 
within an EDS that can then be chosen by the configuration tool.

An EDS also may contain individual parameters and/or a configuration assembly with a complete description 
of all parameters within this assembly. In many applications, the configuration assembly is transmitted as an 
attachment to the Forward_Open message.

3.3.18. Conformance Test
See section 6 of this publication for information on conformance testing.

3.3.19. Requirements for TCP/IP Support
In addition to the various requirements set forth in The EtherNet/IP Specification, all EtherNet/IP hosts are re-
quired to have a functional TCP/IP protocol suite and transport mechanism. The minimum host requirements for 
EtherNet/IP hosts are those covered in RFC 1122 [55], RFC 1123 [56], and RFC 1127 [57] and the subsequent 
documents that may supersede them. Whenever a feature or protocol is implemented by an EtherNet/IP host, 
that feature shall be implemented in accordance to the appropriate RFC (Request for Comment) documents, 
regardless of whether the feature or protocol is considered required or optional by this specification. The Internet 
and the RFCs are dynamic. There will be changes to the RFCs and to the requirements included in this section 
as the Internet and The EtherNet/IP Specifications evolve.

All EtherNet/IP devices shall at a minimum support:

	 - �Internet Protocol (IP version 4) (RFC 791 [48]);

	 - �User Datagram Protocol (UDP) (RFC 768 [47]);

	 - �Transmission Control Protocol (TCP) (RFC 793 [50]);

	 - �Address Resolution Protocol (ARP) (RFC 826 [51]);

	 - �Internet Control Messaging Protocol (ICMP) (RFC 792 [49]);

	 - �Internet Group Management Protocol (IGMP) (RFC 1112 [54] & 2236 [61]);

	 - �IEEE 802.3 (Ethernet) as defined in RFC 894 [52].
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Although the encapsulation protocol is suitable for use on other networks besides Ethernet that support TCP/
IP and products may be implemented on these other networks, conformance testing of EtherNet/IP products is 
limited to those products on Ethernet. Other suitable networks include:

	 - �Point to Point Protocol (PPP) (RFC 1171 [58]);

	 - �ARCNET (RFC 1201 [59]);

	 - �FDDI (RFC 1103 [53]).

3.3.20. Coexistence of EtherNet/IP and Other Ethernet-Based Protocols
EtherNet/IP devices are encouraged, but not required, to support other Ethernet-based protocols and applica-
tions not specified in The EtherNet/IP Specification. For example, they may support HTTP, Telnet, FTP, etc. The 
EtherNet/IP protocol makes no requirements with regard to these protocols and applications.

Figure 40 shows the relationship between CIP and other typical Ethernet-based protocol stacks. Since 
EtherNet/IP, like many other popular protocols, is based on TCP/IP and UDP/IP, coexistence with many other 
services and protocols is not a problem, and CIP blends nicely into the set of already existing functions. This 
means that anyone who is already using some or all of these popular Ethernet services can add CIP without un-
due burden; the existing services like HTTP or FTP may remain as before, and CIP will become another service 
on the process layer.
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3.3.21. Ethernet Infrastructure

3.3.21.1. Traditional approach
To apply EtherNet/IP successfully to the automation world, the issue of determinism has to be considered. The 
inherent principle of the Ethernet bus access mechanism, whereby collisions are detected and nodes back off 
and try again later, cannot guarantee determinism. While Ethernet in its present form cannot be made strictly 
deterministic, there are ways to improve this situation.

First, the hubs typically used in many office environments must be replaced by more intelligent switches 
that will forward only those Ethernet frames intended for nodes connected to these switches. By using 
wire-speed switching fabric and full duplex switch technology, collisions are completely avoided; instead 
of colliding, multiple messages sent to the same node at the same time are queued up inside the switch 
and are then delivered one after another.

As already mentioned in Section 3.3.12.2, using switches that support IGMP Snooping is highly recommended.

If EtherNet/IP networks are to be connected to a general company network, this should always be done through 
a router. The router keeps the UDP multicast messages from propagating into the company network and en-
sures that the broadcast or multicast office traffic does not congest the control network. Even though the router 
separates the two worlds, it can be set up to allow the TCP/IP-based explicit messages to pass through so 
that a configuration tool sitting in a PC in the office environment may be capable of monitoring and configuring 
devices on the control network.

3.3.22. Devices with multiple Ethernet Ports
Chapter 6 of Volume 2 of the CIP Specifications describes a number of scenarios for devices with multiple Eth-
ernet ports and how these scenarios are to be mapped in the object structure.

3.3.23. Ring and Linear Topologies

3.3.23.1. Linear Topology
Many end user applications benefit from connecting devices in a linear or ring topology. With such a topology, 
end devices typically have two Ethernet ports (with an embedded switch), and are connected in sequence, one 
device to the next.

With linear topology a failure of one node or a link between two nodes causes nodes on either side of the failure 
to be unreachable. By using a ring protocol implemented in the end devices, these devices may be configured 
in a ring topology so that a single-point failure does not prevent communication between the remainder of the 
functioning devices.

	
  

Node 1 Node 2 Node 3 Node 4

Figure 41 Linear Topology



78

3.3.23.2. Ring Topology with Device Level Ring (DLR)

3.3.23.2.1. DLR Overview
The EtherNet/IP specification includes the Device Level Ring (DLR) protocol, allowing multi-port devices to be 
connected in a ring topology. DLR provides for fast network fault detection and reconfiguration in order to sup-
port the most demanding control applications. For example, a ring network of 50 nodes implementing the DLR 
protocol has a worst case fault recovery time of less than 3ms.

The DLR protocol operates at Layer 2 (in the ISO OSI network model). The presence of the ring topology and 
the operation of the DLR protocol are transparent to higher layer protocols, such as TCP/IP and CIP, with the 
exception of a DLR object that provides a DLR configuration and diagnostic interface via CIP.

There are several classes of DLR implementation, as described below:

	 - ���	 Ring Supervisor:  
This class of devices is capable of being a ring supervisor. These devices must implement the required 
ring supervisor behaviors, including the ability to send and process Beacon frames at the default Beacon 
interval of 400 microseconds and may be user-configured for as fast as 100 microseconds Beacon inter-
val. Ring supervisors must also send Announce frames, for those devices that rely on the Announce frame 
mechanism to detect a change in ring status;

	 - ����	 Ring Node, Beacon-based: 
This class of devices implements the DLR protocol, but without the ring supervisor capability. The device 
must be able to process and act on the Beacon frames sent by the ring supervisor. Beacon-based ring 
nodes must support Beacon rates from 100 microseconds to 100 milliseconds;

	 -�	 Ring Node, Announce-based: 
This class of devices implements the DLR protocol, but without the ring supervisor capability. These devic-
es do not have the capacity to process Beacon frames, so they simply forward Beacon frames received 
on one port to the other port and instead rely on Announce frames to indicate the ring state. Announce 
frames are sent at a much slower rate than Beacon frames.

3.3.23.2.2. Normal DLR Operation
A DLR network includes at least one node configured to be a ring supervisor, and any number of normal 
ring nodes. The ring supervisor sends special frames (“Beacon” and “Announce” frames) to detect ring 
fault and ring restoration.

Figure 42 illustrates the normal operation of a DLR network. Each node has two Ethernet ports, has im-
plemented an embedded switch and supports DLR. When a ring node receives a packet on one of its Eth-
ernet ports, it determines whether the packet needs to be received by the ring node itself (e.g., the packet 
has this node’s MAC address as the destination MAC address) or whether the packet should be sent out 
the other Ethernet port.
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The active ring supervisor blocks traffic on one of its ports with the exception of few special frames and does 
not forward traffic from one port to other. This configuration avoids a network loop, so only one path exists be-
tween any two ring nodes during normal operation.

The active ring supervisor transmits a Beacon frame through both of its Ethernet ports once per beacon interval 
(400 microseconds by default). The active ring supervisor also sends Announce frames once per second. The 
Beacon and Announce frames serve several purposes:

	 - �The presence of Beacon and Announce frames inform ring nodes to transition from linear topology mode 
to ring topology mode;

	 - �Loss of Beacon frames at the supervisor enables detection of certain types of ring faults. (Note that nor-
mal ring nodes are also able to detect and announce ring faults);

	 - �The Beacon frames carry a precedence value, allowing selection of an active supervisor when multiple ring 
supervisors are configured.

3.3.23.2.3. Ring Faults
Ring faults may include common link failures such as device power failure or media disconnection, or higher 
level failures where the physical layer is active but the device has failed.

The ring supervisor detects a ring fault directly via a Link Status message from a ring node, or indirectly via loss 
of Beacon frames. When a ring fault is detected, the active ring supervisor reconfigures the network by unblock-
ing traffic on its previously blocked port and flushing its unicast MAC table. The supervisor immediately sends 
Beacon and Announce frames with the ring state value indicating that the ring is now faulted.

Ring nodes also flush their unicast MAC tables upon detecting loss of the Beacon in one direction, or upon re-
ceipt of Beacon or Announce frames with the ring state value indicating the ring fault state. Flushing the unicast 
MAC tables at both supervisor and ring nodes is necessary for network traffic to reach its intended destination 
after the network reconfiguration.

Figure 42 Normal DLR Operation
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Figure 43 shows the network configuration after a link failure, with the active ring supervisor passing traffic 
through both of its ports.

3.3.23.2.4. Further Information for Developers
Further details of the DLR protocol operation, including event tables, state diagrams, and other implementation 
requirements are included in Chapter 9 of the EtherNet/IP specification.

3.3.24. Use of the Rapid Spanning Tree Protocol (RSTP)
In addition to the DLR protocol, the Rapid Spanning Tree Protocol (RSTP) has also been allowed for use in con-
junction with EtherNet/IP.

The Rapid Spanning Tree Protocol (RSTP) was originally designed for networks based on a tree topology where 
many devices are connected back to an Ethernet switch which in turn can be connected to other Ethernet 
switches. RSTP is a mature and widely accepted approach to solve the Ethernet ring recovery issue when one 
looks at the most current enhancements to the specification. The IEEE Standard 802.1D 2004 edition incorpo-
rated RSTP into that part of the standard. Changes were made by the IEEE Standards committee to RSTP that 
make it a suitable recovery mechanism for a ring topology for some automation applications.

Chapter 9 of The EtherNet/IP specification describes the use of RSTP within EtherNet/IP.

3.3.25. Tools
Tools for EtherNet/IP Networks can be divided into four groups:

	 - �Physical layer tools are tools (hardware and/or software) that verify the integrity and conformance of the 
physical layer or monitor the quality of the data transmission;

	 - �Commissioning tools: all EtherNet/IP devices need an IP address. In some cases, setting this address can be 
obtained only through the Ethernet network (see Section 3.3.9). In these cases, a BOOTP/DHCP server tool, 
such as the free BOOTP/DHCP routine downloadable from the Rockwell Automation website, is required;

Figure 43 Network Reconfiguration after Link Failure	
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	 - �Configuration tools are software tools capable of communicating with individual devices for data mon-
itoring and configuration purposes. Most configuration tools are EDS-based; however, more complex 
devices like I/O Scanners tend to have their own configuration applets that are only partially based on EDS 
files. Some of these tools support multiple access paths to the network, e.g., via suitable routing devices. 
High-level tools also actively query the devices on the network to identify them and monitor their health. 
Configuration tools also may be integrated into other packages like PLC programming software;

	 - �Monitoring tools typically are PC-based software packages (e.g., traffic analyzers or “sniffers”) that can 
capture and display the Ethernet frames on the network. A raw Ethernet frame display may be good 
enough in some instances, but using a tool that can display both raw Ethernet frames and provide 
multiple levels of frame interpretation (IP, TCP/UDP, EtherNet/IP header interpretation) is recommended. 
Due to the popularity of Ethernet, a large number of these tools are available, but not all of them support 
EtherNet/IP decoding.

In a typical installation, only a commissioning tool and a configuration tool are needed. Protocol monitoring tools 
are used mainly to investigate interoperability problems and to assist during the development process.

Turn to the ODVA Marketplace on the ODVA website to access a list of vendors that provide tools for EtherNet/IP.

3.3.26. Advice for Developers
Before any development of an EtherNet/IP product is started, the following issues should be considered in detail:

	 - �What functionality (Device Classes, see Section 3.2.13) does the product require today and in future applica-
tions?

			   • Explicit messaging server only;

			   • I/O adapter functionality;

			   • Explicit messaging client;

			   • I/O scanner functionality.

	 - �What are the physical layer requirements? Is IP 65/67 required or is IP 20 good enough?

	 - �Will the development be based on commercially available hardware components and software packages 
(recommended) or designed from scratch (possible but costly)?

	 - �What are the configuration requirements?

	 - �What design and verification tools should be used?

	 - �When and where will the product be tested for conformance and interoperability?
	 - �What is an absolute must before products can be placed on the market (own the specification, have the 

company’s own vendor ID, have the product conformance tested)?
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Ethernet chipsets and associated base software packages are available from many vendors. For support of the 
EtherNet/IP part of development, refer to the ODVA website for a list of companies that can support EtherNet/IP 
development. An extended description of the development process is available for download from the ODVA 
website [14].

To help EtherNet/IP developers in creating their products, ODVA runs a series of so-called Implementor Round-
tables for EtherNet/IP during which various aspects of EtherNet/IP are discussed. These workshops (with a 
North American and a European series) have created a number of documents with functionality recommenda-
tions for EtherNet/IP devices, see [9], [10], [11], [12] and [13]. EtherNet/IP devices are then tested against these 
recommendations during multi-vendor testing events, called Plugfests. Visit the ODVA web page to learn more 
about upcoming EtherNet/IP Implementor Roundtables and Plugfests.

3.3.27. EtherNet/IP Summary
Since its introduction in 2000, EtherNet/IP has shown remarkable growth in many applications that previously 
used traditional networks. This success (several million nodes installed to date) is largely attributed to the fact 
that EtherNet/IP uses standard, unmodified Ethernet to introduce real-time behavior into the Ethernet domain 
without sacrificing any of Ethernet’s most useful features, such as company-wide access with standard and 
specialized tools through corporate networks.

A major strength of EtherNet/IP is the fact that it does not require a modified or highly segregated network: stan-
dard switches and routers used in the office world can be used for industrial applications without modification. 
At the same time, all existing transport-level or TCP/UDP/IP-level protocols can continue to be used without any 
need for special bridging devices. The substantially improved real-time behavior of CIP Sync and the intro-
duction of CIP Safety also allow EtherNet/IP to be used in applications that currently require several dedicated 
networks.

Finally, as a member of the CIP family of networks, EtherNet/IP Networks can be combined into an overall CIP 
Network structure that allows seamless communication among CIP Networks, just as if they were only one 
network.

3.4. CompoNet

3.4.1. Introduction
CompoNet is a low-level network that provides high-speed communication between higher-level devices such 
as controllers and simple industrial devices such as sensors and actuators. IEC has published CompoNet as 
IEC 62026-7 in 2010 [26].
 

3.4.2. Relationship to Standards
Like other CIP Networks, CompoNet follows the Open Systems Interconnection (OSI) model, an ISO standard 
for network communications that is hierarchical in nature. Networks that follow this model define all necessary 
functions, from physical implementation up to the protocol and methodology to communicate control and infor-
mation data within and across networks.
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Figure 44 shows the relationship between CIP and CompoNet.

The CompoNet adaptation of CIP is described in Volume 6 of the CIP Networks Library [6]. All other features are 
based on CIP. CompoNet is also described in an international standard [26].

3.4.3. CompoNet Features
CompoNet supports both bit-level I/O slaves (BitIN and BitOUT slaves) and byte-level I/O slaves (WordIN and 
WordOUT slaves) simultaneously in one network. It also supports intelligent repeaters to expand the network 
flexibly and provide network diagnosis [37].

The main features of CompoNet are:

	 - �Selectable data rates: 4 Mbps/3 Mbps/1.5 Mbps/93.75 kbps;

	 - �Single master network with a large number of slave nodes: 384 slave devices maximum including WordIN: 
64; WordOUT: 64; BitIN: 128; BitOUT: 128;

	 - �Up to 64 repeaters per network to expand physical covering area and to adapt different cables;

	 - �Up to 32 nodes (slaves and repeaters) per segment;

Figure 44 Relationship  
Between CIP and CompoNet
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	 - �I/O capacity: 1280 input/1280 output points;

	 - �Support for flat 4-wire, round 4-wire and 2-wire cables in bus and branch topologies;

	 - ��Maximum of 3 segment layers. This means up to 2 repeaters are allowed between any slave 
and the master;

	 - �30/30/100/500 m maximum trunk cable distance with respect to data rates, 150/150/500/2500 m maxi-
mum distance between the most distant slaves with repeaters;

	 - �Trunkline/dropline except for 4 Mbps;

	 - �Efficient communication with multicast polling and Time Division Multiple Access (TDMA).

3.4.4. CompoNet Physical Layer
The physical layer of CompoNet has been designed specifically for this network; it does not reuse any existing 
open technology.

CompoNet uses a transformer-coupled transmission method and a Manchester-encoded signal on the wire; the 
principle circuit of the physical media attachment is shown in Figure 45.

Master ports and slave ports use the same physical media attachment with only minor differences in the cou-
pling network. To help vendors design their CompoNet physical media attachment, ODVA has published recom-
mended circuits for both masters and slaves in Chapter 8 of The CompoNet Specification [6]. Vendors can also 
design their own circuits.

3.4.5. Frame Structure
A typical message frame is composed of the Preamble, Command Code, Command Code Dependent Block(s), 
and CRC, as shown in Figure 46.

Figure 45 Physical Media Attachment of CompoNet	
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Figure 46 A General Frame	
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All frames use the same Preamble. Two types of CRC generator polynomials, CRC8 (8-bit) and CRC16 (16-bit), 
are used depending on which frame is used.

There are seven types of frames with varying lengths of command codes as shown in Figure 47:

	 - �OUT Frame: This is a frame from the Master to the Slaves/Repeaters, which delivers OUT data to OUT 
slaves, specifies the group of slaves/repeaters that should report their status and synchronizes the slaves/
repeaters to start time domain timers of the CN and IN frames. Data is organized in 16-bit words and 
transmitted, LSB first, word by word in ascending order;

	 - �TRG Frame: This frame functions like the OUT frame except that it contains no output data; it is a trigger 
frame sent by the master in place of the OUT frame when it has no outputs to send;

	 - �CN Frame: This frame is used by slaves/repeaters to report their connection status to the master and 
notify the master of a request to send an event;

	 - �IN Frame: This is a frame from input slaves to the master with input data. Data is transmitted, LSB first, 
word by word in ascending order, if the size is greater than 16 bits;

	 - �A_EVENT Frame: Any node on the network can send A_EVENT frames, used for acyclic message com-
munications. Data is in 16-bit words and transmitted, LSB first, word by word in ascending order;

	 - �B_EVENT Frame This frame is always originated by a master who sets data link parameters or reads the 
information as described in Chapter 3.4.9.2. Also, it is used to grant a slave/repeater permission to send 
an A_EVENT request or response;

	 - �BEACON Frame: This frame specifies the data rate and sends the initial communication parameters to 
slaves/repeaters.

Figure 47 Command Code in Frames
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3.4.6. Protocol Adaptation
CompoNet uses connection-based I/O messaging and unconnected explicit messaging. Thus every device 
must have the UCMM (unconnected message manager) function.

3.4.7. Indicators and Switches
CompoNet does not require a product to have indicators. However, if a product includes indicators with any of 
the legends in Chapter 9 of The CompoNet Specification, they must follow the behavior specified in that chapter.

Chapter 9 of The CompoNet Specification describes how switches are used to set the MAC address and baud 
rate. The MAC address may also be set via explicit messaging.

3.4.8. Additional Objects
The CompoNet Specification defines two additional objects, the CompoNet link object and the CompoNet 
repeater object.

3.4.8.1. CompoNet Link Object (Class ID: 0xF7)
The CompoNet link object manages all aspects associated with the CompoNet link, in particular node address 
and baud rate as well as the switches associated with MAC address and baud rate. Furthermore, this object 
contains information on the allocation of the I/O communication. Within a master device, this object may also 
contain information on the slaves that are present on the network.

3.4.8.2. CompoNet Repeater Object (Class ID: 0xF8)
Every repeater device on CompoNet must support one instance of the CompoNet repeater object. Its main 
purpose is to monitor the power supply voltage of the subnet it connects to.

3.4.9. Network Access
 
3.4.9.1. Network Schedule
In a CompoNet network, the master controls bus communications according to its configuration. A master 
divides a communication cycle into several time domains or time slots.

CompoNet conducts arbitration under strict time supervision managed by the master. The communication cycle 
is partitioned into time domains as shown in Figure 48. Each node obtains the right to send data to the network 
within a specified time period after the completion of the OUT time domain.
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The first domain of each communication cycle is the OUT time domain. Subsequent domains are the CN time 
domain, the IN time domain, and the EXTEND time domain:

	 - �OUT Time Domain: The master sends an OUT frame or a TRG frame in this period;

	 - �CN Time Domain: CN frames are sent in this period. The number of CN frames sent in this time domain 
is determined by the master;

	 - �IN Time Domain: IN frames are sent in this period consecutively by all input type devices;

	 - �EXTEND Time Domain: The master executes message communications in this period. Event frames, 
i.e., A_EVENT frames and B_EVENT frames, can be sent in this period. BEACON frames shall be sent 
periodically. The master can send a BEACON before every OUT Time Domain starts or in an idle EXTEND 
Time Domain.

Figure 49 shows the sequence of frames in a Communication Cycle. The master starts the cycle by sending 
an OUT frame. The OUT frame is a broadcast message used to send output data to all OUT slaves. Each OUT 
slave consumes its output data (up to 16 bits) from its offset in the OUT frame. The completion of the OUT 
frame indicates the end of the OUT Time Domain and triggers slaves and repeaters to start the timers that allow 
them to correctly participate in the CN Time Domain and the IN Time Domain.

In the CN Time Domain, the slaves or repeaters addressed by the "CN Request MAC ID Mask" field in the OUT 
frame will transmit their CN frames at the pre-defined time sequence.

During the IN Time Domain IN frames are sent by any IN devices that are in the Participated State, at the 
pre-defined time sequence (see Figure 49). During the IN Time Domain, nodes in the EventOnly Substate do not 
transmit an IN frame.

During the EXTEND Time Domain, nodes may transmit an event command frame and possibly an immediate 
acknowledge frame, depending on the event type. These can be sent by the master, slaves or repeaters. The 
node designated in the event command frame’s Destination MAC ID field will send an event acknowledge frame, 
if required by the specific event command. CIP explicit messaging is done during this domain.

Figure 48 Time Domains
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3.4.9.2. Network Access

CompoNet has an algorithm that controls the network access of any of the slaves and repeaters. This is a com-
bination of actions taken by the slave itself and commands from the master using STR (Status Read) and STW 
(Status Write) operation.

Starting from power-up, all devices first need to detect the data rate of the network. Once a device has detected 
the data rate from the BEACON frames sent by the master, it transitions to the “Non-participated” state. The 
device will stay in this state as long as it receives valid frames within the timeout period (650 ms for 93.75 Kbit/s, 
200 ms for the other data rates) and no other event occurs. When the master has determined that it is ok for 
the slave to transition to the normal operating mode, i.e., no duplicate of the slave’s node number has been 
detected, it sends an STW_Run command to the slave and the slave then transitions to the “Participated” state, 
which is the normal operating state. The slave will leave this state and fall back to the “Non-participated” state 
either when it has experienced a network timeout (no OUT or TRG frames within the timeout period) or when it 
receives an STW_Standby command from the master.

The detection of duplicate node IDs is also a combination of master and slave action. The slave will go to the 
Communication Fault state if told to do so by the master through an STW_Dup command or when its CN 
Counter overflows due to communication errors caused by duplicate node IDs.

3.4.10. Explicit Messaging
CompoNet uses UCMM for explicit messaging; there is no connection-based explicit messaging. Explicit mes-
sages are encapsulated into A_EVENT frames as shown in Figure 50.

Figure 49 A Typical Communication Cycle	
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The format of an explicit message is defined to have 2 parts as shown in Figure 51 : Header and Service Data. 
The Header is the CompoNet-specific part containing information for flow control, fragmentation protocol and 
addresses in a word format. The Service Data part consists of the Request/Response Data as defined in the 
Message Router Request/Response format in Volume 1, Chapter 2 of the CIP Networks Library.

2 types of explicit message formats are defined:

	 - �Compact - 1 Octet Class ID and Instance ID (required);

	 - �Expanded – CIP EPATH (optional).

A fragmentation protocol is defined optionally for supporting long data transfers in explicit messages.

The SID/Extended SID field is used for reply matching. The client sets the value and the server echoes it back. 
Values used are specific to whether the master or the slave is the client in the transaction.

Explicit messaging transactions are subject to timeouts. The default timeout values can be changed by explicit 
messages.

3.4.11. I/O Messaging
I/O messages on CompoNet, like on any other CIP network, are always exchanged in a connection-based man-
ner. Communication object s must be set up for this purpose. CompoNet uses a Predefined Allocation service 
to establish I/O communication between the master and the slaves. Since these I/O connections are not initially 
available when a device is powered on; they first have to be created. This is done by sending an Allocate Service 
to the CompoNet link object of the slave that is to be allocated. When an I/O connection is no longer needed, 
the slave(s) can be released by sending a Release Service to the slave’s CompoNet link object.

CompoNet uses OUT frames to deliver output data to consuming slaves and to trigger IN frame transmission, 
IN frames to deliver produced data to the master and TRG frames to trigger IN frame transmission when the 
master has no output data to send.

OUT/TRG frames are monitored by I/O slaves to restart a watchdog timer. If an I/O slave has not received any 
OUT/TRG frames before the watchdog timer expires, it will produce a Timeout event. The timer value of the 
watchdog is 4 times the Expected Packet Rate (EPR) attribute in the I/O connection instance. A watchdog time-

Word 
offset B15 … B00

0 to n
Header: Control Code, Destination MAC ID, Source MAC 
ID, SID/Extended SID, Size, Service Code, Class ID,  
Instance ID

n+1 
to 21 Service Data

Figure 51 CompoNet Explicit Message Format
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out event transitions the connection instance to the “Timeout” state and the application will be notified.

An OUT frame with I/O-Refresh disabled or a TRG frame indicates “Idle”, and an OUT frame with I/O-Refresh 
enabled indicates “Run”.

3.4.12. I/O Connection Establishment
As described in Section 3.4.11, I/O messages on CompoNet are always exchanged in a connection-based 
manner. Similar to DeviceNet, a CompoNet slave is allocated by the master by sending an Allocate Service to 
the CompoNet link object of the slave that is to be allocated.

When an I/O connection is no longer needed, a slave can be released by sending a Release Service to the 
slave’s CompoNet link object.

In contrast to DeviceNet, which also uses a predefined master/slave connection set, CompoNet only has one 
I/O data exchange mechanism (polled). Therefore, only one type of allocation may take place so there is only a 
single Allocation Choice bit defined in the Allocate service.

3.4.13. Device Profiles

3.4.13.1. Bit slave or Word slave
All existing profiles must be realized by using the minimum amount of CompoNet communication. The following 
rules apply to the adaptation of existing profiles:

	 - �CompoNet frame rules must be observed;

	 - �If an existing profile can be realized by a Bit Slave, it must be a Bit Slave;

	 - �An existing profile must be realized with the minimal data length that is feasible.

3.4.13.2. Byte size differences
CompoNet uses the same definitions as other CIP network even though it has specific transmission frames. In 
order to agree with the data size in bytes as used by CIP, CompoNet needs some rules to align a CompoNet I/O 
frame (which counts I/O size in bits) with CIP objects (which typically count data length in bytes).

For bit-level slaves, the related I/O size shown in the connection object instance is rounded up to 1 byte. For ex-
ample, A BitIN slave with 1 bit valid input data uses IN frames with 2 bits of data to deliver data on the wire, but 
the “produced_connection_size” (attribute 7) of its connection instance shall be “1”, which means 1 byte in CIP.

For byte-level slaves, the same sizes shall be used as with other CIP networks. If the CIP byte size does not match 
the CompoNet frame size, the size is rounded up to the next even number for the transmission. For example, a 
device with 3 bytes of application data will have size 3 in its application object (e.g., the assembly object) and size of 3 
for the “produced_connection_size” (attribute 7) of its connection instance, but the IN frames on the wire have 32 bits 
of valid data.
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3.4.14. Configuration
CompoNet devices typically come with Electronic Data Sheets (EDS) as described in Section 2.7.

To support EDS-based configuration, several CompoNet-specific EDS keywords have been added. With these 
new keywords and most CIP EDS keywords, CompoNet masters can be configured by a tool which can de-
code CompoNet EDS files. As a minimum (apart from the required sections), CompoNet EDSs should contain 
the CompoNet-specific sections that describe the I/O connections available in the slave.

An EDS also may contain individual parameters and/or a configuration assembly with a complete descrip-
tion of all parameters within this assembly. 

CompoNet can also be configured by FDT/DTM, which is beyond the scope of CIP [46].

3.4.15. Advice for Developers
Before starting any CompoNet product development, the following issues should be considered in detail:

	 - �What functionality does the product require today and in future applications?
			   • Slave functionality;
			   • Master functionality.

	 - �What are the physical layer requirements? Is IP 65/67 required or is IP 20 good enough?

	 - �What type of hardware should be chosen for this product?

	 - �What kind of firmware should be used for this product? Will a commercially available communication stack 
be used?

	 - �Will the development of hardware and/or software be done internally or will it be designed by an outside 
company?

	 - �What are the configuration requirements?

	 - �What design and verification tools should be used?

	 - �What kind of configuration software should be used for this product? Will a commercially available soft-
ware package be used, i.e., is an EDS adequate to describe the device or is custom software needed?

	 - �When and where will the product be tested for conformance and interoperability?

	 - �What is an absolute must before my products can be placed on the market (i.e., own the specification, 
have the company’s own vendor ID, have the product conformance tested)?

A full discussion of these issues goes well beyond the scope of this publication, see [38], [39] instead. ODVA 
provides a developer’s toolkit including working source code for CompoNet slaves and repeaters.
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3.4.16. Conclusions
CompoNet is a well-adapted CIP network. It complies with the CIP object modeling, object addressing as 
well as the CIP communication model and its configuration rules. It is easy to realize CIP network routing and 
bridging. Combining with its advantages in aspects of data link and physical layer, CompoNet provides unique 
solutions with existing CIP resources to vendors and users.

All the changes in automation require consideration of the next generations of networking. In view of these 
trends and in view of technologies similar to those described above, it can be seen how much more success-
ful a network can be if it is from the family of CIP Networks in all levels of hierarchy – instead of being patched 
together as a result of selecting isolated independent networks specific to each level.
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4. Benefits of the CIP Family
CIP offers distinct benefits for two groups:
	 - �Device manufacturers;
	 - �Users of devices and systems.

4.1. Benefits for Device Manufacturers
For device manufacturers, a major benefit of using CIP is the fact that existing knowledge can be re-used from 
one protocol to another, resulting in lower training costs for development, sales and support personnel. Manu-
facturers also can reduce development costs, since certain parts (e.g., parameters, profiles) of the embedded 
firmware that are the same regardless of the network can be re-used from one network to the other. As long as 
these parts are written in a high-level language, the adaptation is simply a matter of running the right compiler 
for the new system.

Another important advantage for manufacturers is the easy routing of messages from one system to another. 
Any routing device can be designed very easily since there is no need to invent a “translation” from one system 
to another; both systems already speak the same language. Manufacturers also benefit from working with the 
same organizations for support and conformance testing.

4.2. Benefits for the Users of Devices and Systems
For users of devices and systems, a major benefit of using CIP is the fact that existing knowledge can be 
re-used from one protocol to another, e.g., through Device Profiles, and device behavior is identical from one 
system to another, resulting in lower training costs. Technical personnel and users do not have to make great 
changes to adapt an application from one type of CIP Network to another, and the system integrator can 
choose the CIP Network that is best suited to his application without having to sacrifice functionality.

Another important CIP advantage is the ease of bridging and routing between CIP Networks. Moving informa-
tion among incompatible networks is always difficult and cumbersome since there is seldom a direct translation 
of all functionality on one network to another. This is where users can reap the full benefits of CIP. Forwarding 
data and messages from top to bottom and back again is very easy to implement and uses very little system 
overhead. There is no need to translate from one data structure to another – they are the same. Services and 
status codes share the same benefit, as these, too, are identical over all CIP Networks. Finally, creating a message 
that runs through multiple hops of CIP Networks is simply a matter of inserting the full path from the originating to 
the target device. Not a single line of code or any other configuration is required in the routing devices, resulting in 
fast and efficient services that are easy to create and maintain. Even though these networks may be used in differ-
ent parts of the application, messaging from beginning to end really functions as if there is only one network.

Finally, the producer/consumer mechanisms used in all CIP Networks provide highly efficient use of transmission 
bandwidth, resulting in system performance that often is much higher than that of other networks running at 
higher raw baud rates. With CIP, only the truly important data is transmitted, rather than old data being repeated 
over and over again.

Planned and future protocol extension will always be integrated in a manner that allows coexistence of “normal” 
devices with “enhanced” devices like those supporting CIP Sync and/or CIP Safety. Therefore, no strict segmen-
tation into “Standard”, CIP Sync and CIP Safety networks is required unless there is a compelling reason, e.g., 
unacceptably high response times due to high bus load.
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5. Application Layer Enhancements

5.1. CIP Sync and CIP Motion

5.1.1. General Considerations
While CIP Networks [1]-[4], [6] provide real-time behavior that is appropriate for many applications, a growing 
number of applications require even tighter control of certain real-time parameters. Let us have a look at some 
of these parameters:

	 - �Real-Time:
This term is being used with a variety of meanings in various contexts. For further use in this section the follow-
ing definition is used: A system exhibits real-time behavior when it can react to an external stimulus within a pre-
determined time. How short or how long this time is depends on the application. Demanding industrial control 
applications require reactions in the millisecond range while, in some process control applications, a reaction 
time of several seconds or more is sufficient;

	 - �Determinism:
A deterministic system allows for a worst-case scenario (not a prediction or a probability) when deciding on 
the timing of a specific action. Industrial communication systems may offer determinism to a greater or lesser 
degree, depending on how they are implemented and used. Networks featuring message transmission at a pre-
determined point in time, such as ControlNet, Sercos Interface and Interbus-S, are often said to offer absolute 
determinism. On the other hand, networks such as Ethernet may become non-deterministic under certain load 
conditions; specifically, when it is deployed in half-duplex mode with hubs. However, when Ethernet is deployed 
with full-duplex, high-speed switches, it operates in a highly deterministic manner (see Section 3.3.21);

	 - �Reaction Time:
In an industrial control system, the overall system reaction time is what determines real-time behavior. The 
communication system is only one of several factors contributing to the overall reaction time. In general, reaction 
time is the time from an input stimulus to a related output action;

	 - �Jitter:
This term defines the time deviation of a certain event from its average occurrence. Some communication sys-
tems rely on very little message jitter, while most applications require only that a certain jitter is not exceeded for 
actions at the borders of the system, such as input sampling jitter and output action jitter;

	 - �Synchronicity:
Distributed systems often require certain actions to occur in a coordinated fashion, i.e., the actions must take place 
at a predetermined moment in time, independent of where the action is to take place. A typical application is coor-
dinated motion or electronic gearing. Some of these applications require synchronicity in the microsecond range;
 
This is a system’s capability to process a certain amount of data within a specific time span. In communication systems, 
protocol efficiency, the communication model (e.g., producer/consumer) and end point processing power are most 
important, while the wire speed only sets the limit of how much raw data can be transmitted across the physical media.
CIP Sync is a communication principle that enables synchronous low jitter system reactions without the need 
for low jitter data transmission. This is of great importance in systems that do not provide absolute deterministic 
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data transmission or where it is desirable for a variety of higher layer protocols to run in parallel with the appli-
cation system protocol. The latter situation is characteristic of Ethernet. Most users of TCP/IP-based Ethernet 
want to keep using it as before without the need to resort to a highly segregated network segment to run the 
real-time protocol. The CIP Sync communication principle meets these requirements.

5.1.2. Using IEEE 1588 Clock Synchronization
The published IEEE standard 1588 – Standard for a Precision Clock Synchronization Protocol for Networked 
Measurement and Control Systems [40] – lays the foundation for a precise synchronization of real-time clocks in 
a distributed system.

An IEEE 1588 system consists of a Time Master that distributes its system time to Time Slaves in a tree-like 
structure. The Time Master may be synchronized with another real-time clock further up in the hierarchy while 
the Time Slaves may be Time Masters for other devices “below” them. A Time Slave that is Time Master to 
another set of devices (typically, in another part of the system) is also called a Boundary Clock. The time distri-
bution is done by multicasting a message with the actual time of the master clock. This message originates in a 
relatively high layer of the communication stack and, therefore, the actual transmission takes place at a slightly 
later point in time. Also, the stack processing time varies from one message to another. To compensate for this 
delay and its jitter, the actual transmission time can be captured in a lower layer of the communication stack, 
such as noting the “transmit complete” feedback from the communication chip. This update time capture is then 
distributed in a follow-up message. The average transmission delay also is determined so that the time offset 
between the master and slave clock can be compensated.

This protocol has been fully defined for Ethernet UDP/IP systems, and the protocol details for further industrial 
communication systems will follow. The clock synchronization accuracy that can be achieved with this system 
depends largely on the precision time capture of the master clock broadcast message. Hardware-assisted time 
capture systems can reach a synchronization accuracy of 250 ns or less. Some Ethernet chip manufacturers 
offer integrated IEEE 1588 hardware support.

5.1.3. Additional Object
CIP Sync requires the addition of a time synchronization object.

5.1.3.1. Time Sync Object, (Class ID: 0x43)
The time sync object  manages the real-time clock inside a CIP Sync device and provides access to the IEEE 
1588 timing information.

5.1.4. Fundamentals of CIP Sync Communication
Real-time clocks coordinated through the IEEE 1588 protocol do not, of their own accord, constitute a real-time 
system yet. Additional details showing how time stamping is used for input sampling and for the coordination of 
output actions need to be added. Some Device Profiles need to be extended as well to incorporate time infor-
mation in their I/O assemblies.
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5.1.5. Message Prioritization
Combining these three elements (Sections 5.1.2, 5.1.3 and 5.1.4) in conjunction with a collision-free infrastructure 
(see Section 3.3.21) is sufficient to build a real-time system. However, it is necessary to consider all traffic within the 
system and to arrange all application messages containing time-critical data in such a way that they are guaran-
teed to arrive at all consumers in time. When other Ethernet protocols – such as HTTP or FTP, which may have 
very long frames – need to coexist in the same system, careful configuration may be required. Ethernet frames with 
up to 1,500 bytes of payload (approximately 122 µs long in a 100-Mbit/second system) can easily congest the 
system and delay important messages by an undetermined amount of time, possibly too long for the system to 
function correctly.

This is where message prioritization, known as Quality of Service (QoS) in the Ethernet world, becomes an im-
portant element. EtherNet/IP defines common usage for two standard QoS mechanisms: Differentiated Services 
(Diffserv) and IEEE 802.1Q tagged frames. These schemes are supported by many switches available today. QoS 
allows preferential treatment of Ethernet frames in such a way that those frames with the highest priority will jump 
the message queues in a switch and will be transmitted first. Messages with high priority will be transmitted while 
those with lower priority typically have to wait. Suitable priority assignments for all time-critical messages then guar-
antee their preferential treatment. Standard EtherNet/IP and other Ethernet messages will receive low or no priority 
and thus have to wait until all higher-priority messages have passed. Once this prioritization scheme is implement-
ed, one full-length frame can be accommodated within each communication cycle consisting of a set of prioritized 
input (port A through port E) and output (port F) messages. Figure 52 illustrates this process.

The overall approach to QoS for EtherNet/IP calls for devices to mark their packets with a priority value, using 
Diffserv Code Points and/or 802.1D priority values. By explicitly marking packets with a priority value, switches 
and routers are able to differentiate EtherNet/IP traffic from non-critical traffic, as well as differentiate specific 
EtherNet/IP traffic streams (e.g., IEEE 1588 vs. I/O vs. explicit messaging).
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The following list summarizes the QoS behavior for EtherNet/IP:

	 - �For CIP transport class 0 and 1 connections (i.e., UDP-based), there is a defined mapping of CIP priorities 
to 802.1D priorities and DiffServ Code Points;

	 - �For UCMM and CIP transport class 3 connections (i.e., TCP-based), there is a single defined DiffServ 
Code Point and 802.1D priority value;

	 - �For PTP (IEEE 1588) messages, there are DiffServ Code Points and 802.1D priority values corresponding 
to the two different types of PTP messages;

	 - �When QoS is implemented, the default behavior is to mark packets with DSCP values. Devices may op-
tionally support sending and receiving 801.1Q frames with the corresponding priority values. If supported, 
sending tagged frames is disabled by default in order to prevent device interoperability problems. The end 
user is responsible for enabling the tagged frame behavior and ensuring interoperability between devices;

	 - �The QoS Object provides a means to configure DSCP values, and a means to enable/disable sending of 
802.1Q tagged frames;

	 - �There are no requirements for devices to mark traffic other than CIP or IEEE 1588, but devices are free to 
do so.

5.1.6. Applications of CIP Sync
Typical applications for CIP Sync are time-stamping sensor inputs, distributed time-triggered outputs and distrib-
uted motion, such as electronic gearing or camming applications. For example, in motion applications, sensors 
sample their actual positions at a predetermined time, i.e., in a highly synchronized way, and transmit them to the 
application master that coordinates the motion. The application master then calculates the new reference values 
and sends them to the motion drives. Using CIP Sync, the communication system is not required to have extreme-
ly low jitter; it is sufficient to transmit all time-critical messages, and their exact arrival time becomes irrelevant. The 
assignment of suitable priorities to CIP Sync communication guarantees that all time-critical messages always 
have the bandwidth they need, and all other traffic automatically is limited to the remaining bandwidth.

As a result of these measures, CIP Sync devices can coexist side by side with other EtherNet/IP devices 
without any need for network segmentation or special hardware. Even non-EtherNet/IP devices – provided 
they do not override any of the CIP Sync prioritizations – can be connected without any loss of perfor-
mance in the CIP Sync application.

5.1.7. Expected Performance of CIP Sync Systems
As mentioned, CIP Sync systems can be built to maintain a synchronization accuracy of better than 250 ns, in 
many cases without the use of Boundary Clocks. The communication cycle and thus the reaction delay to un-
expected events is largely governed by the number of CIP Sync devices in a system. Allowing some bandwidth 
(approx. 40%) for non-CIP Sync messages as described in Section 5.1.5, the theoretical limit (close to 100% 
wire load) for the communication cycle of a CIP Sync system based on a 100-Mbit/s Ethernet network is around 
500 µs for 30 coordinated motion axes, with 32 bytes of data each.
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5.1.8. CIP Sync Summary
CIP Sync is a natural extension of the EtherNet/IP system into the real-time domain. Unlike many other pro-
posed or existing real-time extensions to other protocols, CIP Sync does not require any strict network segmen-
tation between high-performance, real-time sections and other parts of the communication system. CIP Sync 
provides the ability to mix parallel TCP/IP-based protocols with industrial communication architectures of any 
size without compromising performance.

CIP Sync currently has been applied to EtherNet/IP, and an extension to other CIP implementations will follow.

5.1.9. CIP Sync and CIP Motion
CIP Motion utilizes CIP Sync to manage real-time motion control. As discussed previously, CIP Sync utilizes the 
IEEE-1588 “Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control 
Systems” [40] to synchronize devices to a very high degree of accuracy. CIP Sync encapsulates the IEEE-1588 
services which measure network transmission latencies and correct for infrastructure delays. The result is the 
ability to synchronize distributed clocks to within hundreds of nanoseconds of accuracy, or less.

Once all the devices in a control system share a synchronized, common, understanding of system time, re-
al-time control can be accomplished by including time as a part of the motion information. Unlike the traditional 
approaches to motion control, the CIP Motion solution doesn’t schedule the network to create determinism. 
Instead, CIP Motion delivers the data and the timestamp for execution as a part of the packet on the network. 
This allows motion devices to plan and follow positioning path information according to a pre-determined execu-
tion plan. Since the motion controller and the drives share a common understanding of time, the motion control-
ler can tell the drive where to go – and what time to be there. This direct use of time in the data packet frees the 
network from the constraint of a rigid data delivery schedule. If data delivery fluctuates slightly on the network 
– the motion execution is unaffected.

There are many benefits to this approach. Since the network is not “scheduled” there is flexibility in the amount of 
data that can be sent back from each device. During runtime, a drive can be re-configured to send more or less 
data depending on the needs of the application. In addition, devices can be added or removed from the system 
because specific time slots are not allocated from the network bandwidth. The motion data packets that move 
between drives and controllers contain all the relevant information required for real-time motion execution; as long 
as basic clock synchronization is maintained - time is used as the event for execution – not the data delivery itself.

5.1.10. CIP Motion
CIP Motion was added to the CIP Networks Library in 2006, with the addition of the CIP Motion Axis Object and 
the CIP Motion Device Profile.

5.1.10.1. CIP Motion Profile 
The CIP application profile used on EtherNet/IP provides a comprehensive set of services and device profiles 
that provide a wide range of functionality and device support. CIP Motion extends the CIP capability by defining 
extensions focused on drive control as listed below:

	 - �Torque, velocity, or position control of servo and VFDs (Variable Frequency Drives)
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	 - �Servo drive and VFD configuration, status, and diagnostic parameters

	 - �Support for feedback-only axes that can provide reference information for camming and lineshafting applications;

	 - �Unicast control-to-drive communications;

	 - �Multicast peer-to-peer communications (future).

The CIP Motion profile is designed to minimize the differences between servo drive and VFD handling. This 
facilitates features like common configuration services, common status and diagnostic services, and common 
application instruction support for servo drives and VFDs making them interchangeable at the application level.

The CIP Motion profile takes advantage of the latest advances in motion control technology to provide a com-
prehensive, state of the art profile. Extensive use of floating point data eliminates the complexity typically associ-
ated with integer math and scaling. The profile focuses on a simplified slave interface, making it easier for drive 
vendors to develop products that connect to the EtherNet/IP network and utilize the CIP Motion extensions.

5.2. CIP Safety
Like other safety protocols based on industry standard networks, CIP Safety adds additional services to trans-
port data with high integrity. Unlike other networks, CIP Safety presents a scalable, network-independent 
approach to safety network design, one in which the safety services are described in a well-defined layer. Since 
safety functionality is incorporated into each device – rather than in the network infrastructure – CIP Safety 
allows both standard and safety devices to operate on the same open network. This capability gives users 
a choice of network architectures – with or without a safety PLC – for their functional safety networks. This 
approach also enables safety devices from multiple vendors to communicate seamlessly across standard CIP 
Networks to other safety devices without requiring difficult-to-manage gateways.

A complete definition of all details of CIP Safety can be found in Volume 5 [5].

5.2.1. General Considerations
Hardwired safety systems employ safety relays that are interconnected to provide a safety function. Hardwired 
systems are difficult to develop and maintain for all but the most basic applications. Furthermore, these systems 
place significant restrictions on the distance between devices.

Because of these issues, as well as distance and cost considerations, implementing safety services on standard 
communication networks is highly preferable. The key to developing safety networks is not to create a network 
that cannot fail, but to create a system where failures in the network cause safety devices to go to a known 
state. If the user knows which state the system will go to in the event of a failure, they can make their application 
safe. But this means that significantly more checking and redundant coding information is required.

So, to determine the additional safety requirements, the German Safety Bus committee [32] implemented and 
later extended an existing railway standard [33]. This committee provided design guidelines to safety network 
developers to allow their networks and safety devices to be certified according to IEC 61508 [24]. The latest 
version of this document has been published as GS-ET-26 [34].



100

Based on these standards, CIP was extended for high-integrity safety services. The result is a scalable, routable, 
network-independent safety layer that alleviates the need for dedicated safety gateways. Since all safety devices 
execute the same protocol, independent of the media on which they reside, the user approach is consistent and 
independent of media or network used. 
 
CIP Safety is an extension to standard CIP that has been approved by TÜV Rheinland for use in IEC 61508 SIL 
3 and EN 954-1 Category 4 applications, now ISO 13849-1, performance level e [35]. It extends the model by 
adding CIP Safety application layer functionality, as shown in Figure 53. The additions include several safety-re-
lated objects and Safety Device Profiles with specific implementation details of CIP Safety as implemented on 
DeviceNet, EtherNet/IP and Sercos.

Because the safety application layer extensions do not rely on the integrity (see Section 5.2.3) of the underlying 
standard CIP as described in Section 2 and data link layers as described in Sections 3.1, 3.2 and 3.3, single 
channel (non-redundant) hardware can be used for the data link communication interface. This same partitioning of 
functionality allows the use of standard routers for safety data, as shown in Figure 54. Routing safety messages is 
possible because the end device is responsible for ensuring the integrity of the data. If an error occurs during data 
transmission or in the intermediate router, the end device will detect the failure and take appropriate action.
This routing capability allows the creation of safety cells on one network, e.g., DeviceNet, with quick reaction 
times to be interconnected with other cells via a backbone network such as EtherNet/IP for interlocking, as 
shown in Figure 55. Only the safety data that is needed is routed to the required cell, which reduces individual 
bandwidth requirements. The combination of rapidly responding local safety cells and the inter-cell routing of 
safety data allows users to create large safety applications with fast response times. Another benefit of this con-
figuration is the ability to multicast safety messages across multiple networks.

Figure 53 CIP Communication  
Layers Including Safety
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5.2.2. Implementation of Safety

As indicated in Figure 53, all CIP Safety devices also have underlying standard CIP functionality. The extension 
to the CIP Safety application layer is specified using a Safety validator object. This object is responsible for man-
aging the CIP Safety Connections (standard CIP Connections are managed through communication objects) 
and serves as the interface between the safety application objects and the link layer connections, as shown in 
Figure 56. The safety validator ensures the integrity of the safety data transfers by applying the measures de-
scribed in Section 5.2.3.

Figure 54 Routing of Safety Data
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Functions performed by the safety validator object:

	 - �The producing safety application uses an instance of a Client Validator to produce safety data and ensure 
time coordination;

	 - �The client uses a link data producer to transmit the data and a link consumer to receive time coordination 
messages;

	 - �The consuming safety application uses a Server Validator to receive and check data;

	 - �The server uses a link consumer to receive data and a link producer to transmit time coordination messages.

	 - �The link producers and consumers have no knowledge of the safety packet and fulfill no safety function

The responsibility for high-integrity transfer and checking of safety data lies within the safety validators.

Figure 56 Relationship of Safety Validators	
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5.2.3. Ensuring Integrity
CIP Safety does not prevent communication errors from occurring; rather, it ensures transmission integrity by 
detecting errors and allowing devices to take appropriate actions. The safety validator is responsible for detect-
ing these communication errors. The nine communication errors which must be detected are shown in Figure 
57, along with the five measures CIP Safety uses to detect these errors [33].

5.2.3.1. Time Expectation via Time Stamp
All CIP Safety data are produced with a time stamp that allows Safety Consumers to determine the age of the 
produced data. This detection measure is superior to the more conventional reception timers. Reception timers 
can tell how much time has elapsed since a message was last received, but they do not convey any information 
about the actual age of the data. A time stamp allows transmission, media access/arbitration, queuing, retry and 
routing delays to be detected.

Time is coordinated between producers and consumers using ping requests and ping responses, as shown in 
Figure 58. After a connection is established, the producer generates a ping request, which causes the consumer 
to respond with its consumer time. The producer will note the time difference between the ping production and 
the ping response and store this as an offset value. The producer will add this offset value to its producer time 
for all subsequent data transmissions. This value is transmitted as the time stamp. When the consumer receives 
a data message, it subtracts its internal clock from the time stamp to determine the data age. If the data age is 
less than the maximum age allowed, the data are applied; otherwise, the connection goes to the safety state. 
The device application is notified so that the connection safety state can be reflected accordingly. 

The ping request-and-response sequence is repeated periodically to correct for any producer or consumer time 
base drift.
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5.2.3.2. Production Identifier (PID)
A Production Identifier is encoded in all data produced by a Safety Connection to ensure that each received message 
arrives at the correct consumer. The PID is derived from an electronic key, the device serial number and the CIP con-
nection serial number. Any safety device inadvertently receiving a message with the incorrect PID will go to a safety 
state. Any safety device that does not receive a message within the expected time interval with the correct PID will 
also go to a safety state. This measure ensures that messages are routed correctly in multi-network applications.

5.2.3.3. Safety CRC (Cyclic Redundancy Code)
All safety transfers on CIP Safety use Safety CRCs to ensure the integrity of the transfer of information. The 
Safety CRCs serve as the primary means of detecting possible corruption of transmitted data. They provide 
detection up to a Hamming distance of four for each data transfer section, though the overall Hamming distance 
coverage is greater for the complete transfer due to the protocol’s redundancy. The Safety CRCs are generated 
in the Safety Producers and checked in the Safety Consumers. Intermediate routing devices do not examine 
the Safety CRCs. Thus, by employing end-to-end Safety CRCs, the individual data link CRCs are not part of 
the safety function. This eliminates certification requirements for intermediate devices and helps to ensure that 
the safety protocol is independent of the network technology. The Safety CRC also provides a strong protection 
mechanism that allows detection of underlying data link errors, such as bit stuffing or fragmentation.
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While the individual link CRCs are not relied on for safety, they are still enabled. This provides an additional level 
of protection and noise immunity by allowing data retransmission for transient errors at the local link.

5.2.3.4. Redundancy and Cross-check
Data and CRC redundancy with cross-checking provides an additional measure of protection by detecting 
possible corruption of transmitted data. By effectively increasing the Hamming distance of the protocol, these 
measures allow long safety data packets – up to 250 bytes – to be transmitted with high integrity. For short 
packets of two bytes or less, data redundancy is not required; however, redundant CRCs are cross-checked 
to ensure integrity.

5.2.3.5. Diverse Measures for Safety and Standard
The CIP Safety protocol is present only in safety devices, which prevents standard devices from masquerading 
as safety devices.

5.2.4. Safety Connections
CIP Safety provides two types of Safety Connections:
	 - �Unicast Connections;
	 - �Multicast Connections.
A Unicast Connection, as shown in Figure 59, allows a safety validator client to be connected to a safety valida-
tor Server using two link-layer connections

	
  

 
 

Consuming 
Safety 

Application 

 

Safety_Data 
Reception 

Safety 
Validator 
Server 

 

Data Connection 

Time Coordination 
Connection 

Data 
Producer 

Data 
Consumer 

Data 
Consumer 

Data 
Producer 

Safety_Data 
Production 

Safety_Ack 
Reception 

Safety 
Validator 

Client 

Safety_Ack 
Production 

Producing 
Safety 

Application 

Figure 59 Unicast Connection



106

	
  

 
 

Consuming 
Safety 

Application 
1 

 

Safety 
Validator 
Server 1  

Data Connection 1 

Data 
Producer 

Data 
Consumer 

Safety 
Validator 

Client 

Time 
Correction 
Production 

Time 
Correction 
Reception 

Safety_Ack 
Reception 

Safety_Data 
Production 

 

Safety 
Validator 
Server 2 

Time 
Correction 
Reception 

Consuming 
Safety 

Application 
2 

Data 
Producer 

Data 
Consumer 

Data Connection 2 

Time Coordination 
Connection 2 

Data 
Producer 

Data 
Consumer 

Safety_Ack 
Production 

Safety_Ack 
Production 

Safety_Data 
Reception 

Time Coordination 
Connection 1 

Data 
Producer 

Data 
Consumer 

Safety_Data 
Reception 

Producing 
Safety 

Application 

A Multicast Connection, as shown in Figure 60, allows up to 15 safety validator servers to consume safety 
data from a safety validator client. When the first safety validator server establishes a connection with a safety 
validator client, a pair of link layer connections are established, one for data-and-time correction and one for 
time coordination. Each new safety validator server uses the existing data-and-time correction connection and 
establishes a new time coordination connection with the safety validator client.

Figure 60 Multicast Connection
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To optimize throughput on DeviceNet, each Multicast Connection uses three data link connections, as shown in 
Figure 61. 
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CIP Safety implementations on other networks do not require this split. The data-and-time correction messages 
are sent on separate connections. This allows short messages to be transmitted on DeviceNet within a single 
CAN frame and reduces the overall bandwidth, since the time correction and time coordination messages are 
sent at much slower periodic intervals.

When multicast messages are routed off-link, the router combines the data-and-time correction messages 
from DeviceNet and separates them when messages reach DeviceNet. Since the safety message contents are 
unchanged, the router provides no safety function.

5.2.5. Message Packet Sections
CIP Safety has four message sections:

	 - Data;
	 - Time-stamp;
	 - Time correction;
	 - Time coordination.

The description of these formats goes beyond the scope of this book. For available materials on this topic that 
go into more detail see [5], [36].

5.2.6. Configuration
Before safety devices can be used in a safety system, they first must be configured and connections must be 
established. The process of configuration requires placement of configuration data from a configuration tool in a 
safety device. There are two possible sequences for configuration:

	 - Configuration tool directly to device;
	 - Via an intermediate device.

In the configuration tool-to-device case, as shown in Figure 62, the configuration tool writes directly to the de-
vice to be configured (1), (2).
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In the case of intermediate device configuration, the tool first writes to an originator (1) and the originator writes 
to the target using an Originator-to-Target Download (3) or a SafetyOpen service (4). The SafetyOpen service (4) 
is unique in that it allows a safety connection to be established at the same time that a device is configured.

5.2.7. Connection Establishment
CIP provides a connection establishment mechanism, using a Forward_Open service that allows produc-
er-to-consumer connections to be established locally or across multiple networks via intermediate routers. An 
extension of the Forward_Open, called the SafetyOpen service, has been created to allow the same multi-net-
work connections for safety.

There are two types of SafetyOpen requests:

	 - Type 1: With configuration;
	 - Type 2: Without configuration.

With the Type 1 SafetyOpen request, configuration and connections are established at the same time, allowing 
rapid configuration of devices with simple and relatively small configuration data.

With the Type 2 SafetyOpen request, the safety device first must be configured and the SafetyOpen request 
then establishes a Safety Connection. This separation of configuration and connection establishment allows the 
configuration of devices with large and complex configuration data.

In both cases, the SafetyOpen request establishes all underlying link layer connections – across the local net-
work as well as any intermediate networks and routers.

5.2.8. Configuration Implementation
CIP Safety provides the following protection measures to ensure configuration integrity:

	 - Safety Network Number;
	 - Password Protection;
	 - Configuration Ownership;
	 - Configuration Locking.

5.2.8.1. Safety Network Number
The Safety Network Number provides a unique network identifier for each network in the safety system. The Safety Net-
work Number, combined with the local device address, allows any device in the safety system to be uniquely addressed.

5.2.8.2. Password Protection
All safety devices support the use of an optional password. The password mechanism provides an additional 
protection measure, prohibiting the reconfiguration of a device without the correct password.
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5.2.8.3. Configuration Ownership
The owner of a CIP Safety device can be specified and enforced. Each safety device can specify that it be con-
figured only by a selected originator, or that the configuration is accomplished by a configuration tool.

5.2.8.4. Configuration Locking
Configuration Locking provides the user with a mechanism to ensure that all devices have been verified and 
tested prior to being used in a safety application.

5.2.9. Safety Devices
The relationship of the objects within a safety device is shown in Figure 63. Note that CIP Safety extends the 
CIP object model, with the addition of Safety I/O assemblies, safety validator and Safety Supervisor Objects.
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 5.2.10. Additional Objects
CIP Safety requires two additional objects, the Safety Supervisor Object and the Safety validator object.

5.2.10.1. Safety Supervisor Object, (Class ID: 0x39)
The Safety Supervisor Object provides a common confi guration interface for safety devices. The Safety Su-
pervisor Object centralizes and coordinates application object state behavior and related status information, 
exception status indications (alarms and warnings) and defi nes a behavior model which is assumed by objects 
belonging to safety devices.

5.2.10.2. Safety Validatior Object, (Class ID: 0x3A)
The Safety validator object contains the information necessary to coordinate and maintain reliable safety connec-
tions between client and server safety applications. The primary role of the Safety validator object is to act as a 
safety transport manager of multiple low-level CIP connections that together form a complete safety connection.

5.2.11. CIP Safety on Sercos

5.2.11.1. What is Sercos?
Sercos (SErial Realtime COmmunication System), the digital drive interface approved as international standard 
IEC 61491 [28] in 1995, is optimized for high-speed deterministic motion control, where the exact synchroni-
zation of multiple drives is required. Sercos has become a globally accepted real-time networking standard for 
demanding motion control applications over the last decade. Sercos has outstanding technical features like real 
time capabilities, high performance, noise immunity, and a very large variety of products and suppliers. Sercos 
not only defi nes the protocol structure, but also includes an ample variety of profi le defi nitions (parameters and 
functionalities), which are already successfully used in a large number of applications. Sercos is supported and 
maintained by Sercos International [45].

The third generation Sercos (Sercos III) combines the proven mechanisms of Sercos interface with Ethernet's 
physics and protocol. Typical Sercos III networks use a double ring structure which provides media redundancy 
with fast switch-over. In addition to the ring structure, a linear structure is also possible, see Figure 64. 
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A Sercos ring or line structure consists of one master and multiple slaves – drives, I/O, sensors. Multiple rings 
can be used in a network to realize distributed and hierarchical network structures. The communication is based 
on a time-slot protocol using fi xed and distinct communication cycles. A communication cycle is divided into 
two channels with a timing control.

In the real-time channel, collective Sercos III telegrams are transferred as broadcast data. This increases the 
bandwidth and improves the protocol effi  ciency. The addressing of the Sercos III devices is achieved by pre-de-
fi ned addresses or by addresses assigned by the master (remote addressing). Sercos III telegrams are pro-
cessed on the fl y to reduce delay times in a network.

In the non-real-time channel, any non-real-time Ethernet frames can be sent as individual telegrams to any device in the 
network. The addressing for this is carried out directly via the MAC addresses allocated to the master and slave devices.

5.2.11.2. CIP Safety on Sercos
CIP Safety on Sercos extends the functionality of the Sercos III real-time communication system to support both 
safety-relevant and non-safety relevant data transmission over one single network.

The CIP Safety Stack (CSS) is implemented corresponding to the CIP Safety specifi cation without modifi cations. 
Thus, CIP Safety on Sercos uses the safe message format and the CIP Safety objects and services of the CIP 
Safety specifi cation, as well as the same CRC polynomials and algorithms. For this reason, it is possible for the 
CIP Safety Adaptation Layer (CSAL) as well as the Sercos III subordinate communication system, including the 
Sercos Messaging Protocol (SMP), to be viewed as part of the non-safety-relevant transfer, see Figure 65.

The main task of the CIP Safety Stack (CSS) in a CIP Safety Device is to create and process CIP Safety mes-
sages using cyclic process data, and to correspondingly specify communication errors with the help of the 
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different error recognition measures. A CIP Safety Device can be a tool, an originator or a target. In addition to 
the process data, the CSS must also process configuration data.

Because Sercos III does not provide any transport connections, an adaptation layer is required in order to fill 
the gaps between CIP Safety and Sercos III. An important task is assigned to the Sercos Messaging Protocol 
(SMP), which is located above the cyclic Sercos III connections. It offers the CSAL services in order to send 
messages, which can be of any length, from a producer to the consumers. In order to transport this data, the 
SMP uses data containers with a fixed length in a cyclic connection. Messages that are larger than one data 
container are split up into several fragments and transferred subsequently. Messages with a higher priority can 
interrupt the transfer of long, fragmented messages with lower priority. This means that an effective multiplexing 
of several logical communication channels in a single transport container is possible. The SMP is part of the 
non-safety-relevant transfer. Mechanisms and measures for the data integrity of CIP Safety are not influenced.

With Sercos III and CIP Safety the implementation of a wide range of topologies is possible. The range stretches 
from structures with a central safety control to completely decentralized solutions without any safety control. 
With Sercos III and CIP Safety it is also possible to route safe data beyond the limits of a Sercos network, and 
also beyond non-safety-relevant participants.

CIP Safety on Sercos has been integrated into the CIP Specification by extending Volume 5 (CIP Safety) and 
through some minor adjustments to Volume 1 (CIP Common). Since the safety protocol was not changed at all, 
the main parts of Volume 5 were only changed in those areas where modified wording was needed to accom-
modate the additional network. However, there is a new appendix in Volume 5 (Appendix G) that describes how 
CIP Safety is being transported on the Sercos transport layer. Since the CIP Safety protocol as such remained 
unchanged, most of the adaptation work was done on the Sercos side which is reflected in the CIP Safety on 
Sercos specification available from Sercos International [45].

5.2.12. CIP Safety Summary
CIP Safety is a scalable, routable, network-independent safety protocol based on extensions to the CIP archi-
tecture. This concept can be used in solutions ranging from device-level networks such as DeviceNet to higher 
level networks such as EtherNet/IP. Designing network independence into CIP Safety allows multi-network rout-
ing of Safety Connections. Functions such as multi-network routing and multicast messaging provide a strong 
foundation that enables users to create the rapidly responding local cells and interconnect remote cells that are 
required for today’s safety applications. CIP Safety’s design also enables expansion to future network technolo-
gies as they become available.

5.3. CIP Energy
The optimization of energy usage is a natural expansion of ODVA’s application coverage for industrial automa-
tion. The objects that support this functionality were added to Volume 1 of the CIP Networks Library in Edition 
3.12. The management of energy usage methodology described in the specification defines a set of standard 
attributes, services and behaviors that will facilitate the reporting of industrial devices’ use of operational energy, 
and the control of industrial devices into and out of non-operational energy conserving states.

Four objects have been defined as of the publication of this text. A “Base Energy” application object standard-
izes access to the most basic data and services common to the various energy resources used in industry. The 
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base energy object also provides the means to aggregate energy information at various levels of the enterprise 
and present this data consistently at all levels: from the asset level at the bottom of the energy usage tree, up 
through the machine and process level to the system level and ultimately to the production and enterprise do-
mains. Two resource type application objects are defined. An electrical energy object provides electrical energy 
data reporting capabilities and diagnostics for the electrical energy consumers and producers found within the 
various levels of an industrial facility. A “non-electrical energy object” provides unified reporting of energy con-
sumption and production of non-electrical energy data such as gas and steam. A “power management object” 
provides standardized attributes and services to support the control of devices into and out of paused or sleep 
states. An overview of these objects in the overall construct of CIP is shown in Figure 66.
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What follows is a brief introduction to the objects involved in CIP Energy. More information can be found in references [63], [64].

5.3.1. Additional Objects
4 additional objects have been defined for energy management so far, the base energy object, the electrical 
energy object, the non-electrical energy object and the power management object.

5.3.1.1. Base Energy Object (Class ID: 0x4E)
The base energy object acts as an “Energy Supervisor” for energy implementations in CIP. It provides energy 
mode services, and can provide aggregation services for aggregating energy values up through the various 
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levels of an industrial facility. It also provides a standard format for reporting energy metering results. The object 
is independent of the energy type and allows data and functionality specific to the energy type to be integrated 
into an energy system in a standard way.

Multiple instances of the base energy object may exist in a device. For instance, an electric power monitor may 
count metering pulse output transitions of a separate metering device. The count of such transitions, represent-
ed by a base energy object instance, would reflect the energy consumption measured by the separate device. 
As another example, a device may act as a proxy for the energy consumed by a number of simple devices, 
where each device is associated with a separate instance of the base energy object. An instance of the base 
energy object may exist as a stand-alone instance, or it may exist in conjunction with an instance of either the 
electrical energy object or the Non-electrical energy object. If an instance of either the electrical or non-electrical 
energy object is implemented in a device, it must be associated with a base energy object instance in the device 
(i.e., it is a child of the base energy object instance).

The object definition allows for creating five types of devices, Energy Measured, Energy Derived, Energy Proxy, 
Energy Rate Fixed and Energy Aggregated devices.

	 - �Energy Measured devices are devices such as a power monitor that measures voltage, current, phase 
angle, etc., and calculates power and energy;

	 - �Energy Derived devices are devices such as an overload relay that measures motor current, assumes a 
value of motor voltage and then derives the value of power and energy;

	 - �Energy Proxy devices such as a controller with discrete outputs that control external devices, each of 
which has an associated user-provided energy transfer rate that the controller uses to calculate the energy 
used based on the state of the output;

	 - �Energy Rate Fixed devices are simple devices that report a nominal or user-defined energy value when 
operating and zero when in a non-operating state:

	 - �Energy Aggregated devices are devices that can collect energy usage of “child” devices and report them 
together as an aggregate value.

Figure 67 illustrates these devices.
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Energy Odometers are defined to report large amounts of energy usage in a manner similar to a car odometer or 
a typical power meter on a residential home. The values are in multiples of kilowatt-hours as shown in Figure 68:

The Base Energy object may contain information about Electrical and Non-Electrical Energy object instances 
that it refers to or it may be a stand-alone instance with no children.

5.3.1.2. Electrical Energy Object (Class ID: 0x4F)
The electrical energy object provides unified electrical energy specific data reporting and diagnostics for the CIP 
enabled devices and processes found within the various levels of an industrial facility. Energy management is typically 
related to the measurement and reporting of a variety of metering results. This object provides for the consistent re-
porting of electrical energy data. Electrical energy is organized in a separate object to accommodate its alternating and 
poly-phase characteristics, which result in a collection of attributes that are unique among energy sources.
Using the electrical energy object in association with an instance of the base energy object (via the associated 
base energy object path, attribute 41) provides a comprehensive approach to reporting usage of electrical ener-
gy in a consistent and open fashion.
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5.3.2. Non-Electrical Energy Object (Class ID: 0x50)
The non-electrical energy object provides unified non-electrical energy specific data reporting and diagnos-
tics for the CIP enabled devices and processes found within the various levels of an industrial facility. Energy 
management is typically related to the measurement and reporting of a variety of metering results. This object 
provides for the consistent reporting of non-electrical energy data, including, without limitation, natural gas, fuel 
oil, steam, compressed air, hot water, chilled water, etc.

Using the non-electrical energy object in association with an instance of the base energy object (via the Associ-
ated base energy object Path, attribute 41) provides a comprehensive approach to reporting usage of non-elec-
trical energy in a consistent and open fashion.

5.3.4. Power Management Object (Class ID: 0x53)
The power management object provides standardized attributes and services to support the control of devices 
into and out of paused or sleeping states. A device supporting the power management object can transition 
between various energy-related states. A Power Management service and optional adaptation specific sleep 
mechanisms are used to control entry into and exit from energy saving states. Within the paused states, a de-
vice may have multiple internal energy saving modes, each with a different power consumption level.
There are six basic energy-related states for CIP Power Management capable devices:

	 1.	 Power Off;

	 2.	 Not Owned – Device is operational but no client “owns” the Power_Management service of the device;

	 3.	 Owned – The device is operational and a client “owns” the Power_Management service of the device;

	 4.	 Paused – Energy saving state; CIP communication continues;

	 5.	 Sleeping – Energy saving state; CIP communication is suspended.;

	 6.	 Resuming – Device is transitioning from Paused to Owned.

Within a particular power management state, a device’s operational capabilities and power levels may remain in 
transition for a time until the agreed power usage level is attained.
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5.4. Integration of non-CIP Networks

5.4.1. Integration of Modbus into CIP

5.4.1.1. Overview
With the advent of the Modbus translator customers can take advantage of EtherNet/IP and Modbus ca-
pabilities in the same network. The simplicity of the Modbus protocol is combined with the unique values of 
EtherNet/IP. The relationship is further strengthened because the Modbus/TCP protocol and EtherNet/IP are 
both based on standard Ethernet technology. Both protocols can coexist in the same network because they 
both operate over standard Ethernet. Migration of existing products is enabled with no custom hardware re-
quired.

By establishing the Modbus Integration SIG within ODVA, the seamless connection between the Modbus proto-
col and EtherNet/IP was enabled. Volume 7, Integration of Modbus Devices into CIP [7], was developed within 
the SIG and later approved by the ODVA. Edition 1.0 of Volume 7 supports translation between EtherNet/IP 
and Modbus/TCP. The Modbus Serial protocol support was added to Volume 7 in Edition 1.1 and approved by 
the ODVA at the beginning of 2008. Clarifications and updates to Volume 7 are being considered to continually 
improve the volume.

The Modbus protocol and the EtherNet/IP protocol make up the majority of the installed Ethernet-based device 
level products to date. Both are widely accepted standards with strong international organizations behind them 
and solid membership and participation from those organizations. Volume 7 links the two protocols together.

The Modbus Integration SIG was formed in May of 2007 with the purpose to create the Modbus translator. More 
than 20 different companies belong to the Modbus Integration SIG. The diverse membership of the SIG insured 
an unbiased specification was developed. The diversity of the SIG membership brought all perspectives into the 
development of the specification from the Modbus target device developer to the Programmable Logic Control-
ler (PLC) manufacturer to the EtherNet/IP target vendor to the CIP originator designer. All aspects of the CIP and 
Modbus networks were and are represented.

The development of Volume 7 came with the requirement that the use of the Modbus translator would not force 
changes to existing Modbus target devices or the EtherNet/IP target devices. Also a requirement for the devel-
opment was to minimize the impact to CIP originators. These requirements were met. The impact to the CIP 
originator was focused on the need to support both the Modbus/TCP and EtherNet/IP protocol on the same 
physical Ethernet port should a customer desire to do so.

The Modbus translator can be implemented in the CIP originator or as a CIP router, i.e. the translator can be in 
a PLC or as a standalone device. The Modbus translator effort and consequently Volume 7 of the CIP suite of 
protocols was targeted at CIP originator developers, CIP router developers and Modbus vendors. The first two 
audiences are obvious. The Modbus device vendor is targeted so that this vendor can better understand how 
their device can be more easily integrated into the CIP to Modbus solution.

As the name states the Modbus translator translates CIP objects and services into Modbus messages and 
function codes. A CIP originator communicates with and controls Modbus target devices through the Modbus 
translator. To the CIP originator the Modbus target devices appear as CIP target devices. The Modbus target 
devices believe they are being controlled by a Modbus client. The translation is transparent.
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The user would place a standalone Modbus translator in the user’s CIP-based network then connect 
Modbus target devices to the Modbus side of the translator. The other side of the translator would be 
connected to the CIP originator.

The user also has the option to use a Modbus translator as a module inside the CIP originator. In this case the 
user would talk EtherNet/IP across the backplane to the translator. The Modbus target devices connect exter-
nally to the PLC-based translator.

A third approach places the Modbus translator and the Modbus/TCP target devices on the same network 
as the EtherNet/IP target devices using the shared cabling. The EtherNet/IP traffic destined for the Modbus 
target devices would be sent to the Modbus translator and the Modbus translator would send the Modbus/
TCP traffic over the same network to the Modbus/TCP target devices. The Modbus/TCP target devices would 
reply to the Modbus translator then the translator will translate the Modbus traffic into EtherNet/IP traffic sent 
to the CIP originator.

In all three cases, the CIP-to-Modbus translation allows communication using I/O connections as well as explicit 
messaging. When explicit messaging is used, the translator may offer two types of access to the data in the 
Modbus device, through publicly defined instances for Modbus data in the assembly object using Common 
Services or through the Modbus Object using object-specific services.

Logically in the OSI model of the TCP/IP stack, the Modbus translation on Ethernet sits above Modbus/TCP 
application in the application layer (Layer 7) and below the CIP application layers. The Modbus translator on 
Ethernet is on the same level as the EtherNet/IP encapsulation. The lower layers of the stack are the standard 
TCP/IP stack layering.

Changes to the CIP originator were limited. Port types were added for Modbus/TCP and Modbus Serial devices 
with associated port names and numbering. The identity object was extended to include Modbus-specific infor-
mation and a Modbus Object was developed and included in the CIP Object Library. Status codes were added 
to identify errors and status items that are specific to Modbus. Other status codes were modified to better sup-
port Modbus and EtherNet/IP together.

All the capabilities of Modbus translator are detailed in Volume 7, “Integration of Modbus Devices into CIP” with-
in the CIP suite of protocols. The updated Volume 1, Common Industrial Protocol (CIP) Specification, includes 
support for the Modbus translation as does the updated Volume 2, EtherNet/IP Adaptation of CIP.

Customers now have greater opportunity to improve their automation networks by being able to incorporate 
Modbus devices into their existing CIP networks seamlessly, especially in the case of EtherNet/IP and Modbus 
TCP devices on the same physical network. Customers have a broader range of products available to them and 
can mix and match features they need from a device without being restricted to a single protocol. Risk to the 
buyer is reduced by the availability of greater choices to use devices based on EtherNet/IP and Modbus/TCP.

5.4.1.2. Object Extensions
The definition of the Modbus translation has resulted in extensions of existing objects as well as the creation of 
new objects.
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5.4.1.2.1. Extension of Existing Objects
The main extension for the Modbus integration is within the identity object which has been enhanced with an attri-
bute containing Modbus-specific identity information plus a translation definition for standard CIP ID information.

A set of assembly object and parameter object Instances has been defined that mirrors Modbus-specific data 
tables (holding registers, input registers, coils, discrete inputs). These instance numbers are now represented by 
32-bit numbers (UDINT) to accommodate the 4 data set ranges represented by 16-bit numbers each.

5.4.1.3. Additional Objects
Volume 7 defines two additional objects that are found only on Modbus devices, the Modbus object and the 
Modbus serial link object.

5.4.1.3.1. Modbus Object (Class ID: 0x44)
The Modbus object provides an interface to Modbus data existing in a CIP device. Within a CIP to Modbus 
translator the Modbus object provides an interface to the data and functions within a target Modbus device.

No instance attributes are defined for this object; instead, the Modbus object defines services that mirror Mod-
bus Function Codes along with their associated address data.

5.4.1.3.2. Modbus Serial Link Object (Class ID: 0x46)
The Modbus serial link object is used for configuration of a Modbus serial data communication channel and 
includes link-specific counters and status information for the port. Each instance of this object represents the 
client portion of a Modbus serial channel, which allows the Modbus translator to read/write data with external 
Modbus serial servers.

5.4.2. Integration of IO-Link into CIP
IO-Link, standardized as IEC 61131-9, is a communication standard that extends the 24 VDC I/O interface of 
IEC 61131-2 to allow serial communication between I/O devices (IO-Link Masters) and sensors and actuators 
(IO-Link Devices).

An ODVA SIG, established in fall 2012, is working on the definition of the integration of IO-Link masters and 
devices into CIP as of the publication of this document.  Check www.odva.org for updates on this work.
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6. Conformance Testing
Open specifications, such as those managed by ODVA, both provide vendors with the ability to build products 
that will interoperate with products from other vendors, and allow users to choose products that will interoperate 
in multi-vendor systems by ensuring a common network interface for given device types. In order to achieve 
interoperability of devices from multiple vendors, product compliance with these open specifications is essential.

ODVA drives product compliance with the CIP Network Specifications primarily in two ways. First, each vendor 
is required to sign a Terms of Usage Agreement for the ODVA technology or technologies, for which they intend 
to make, have made, sell or have sold products. In signing this agreement, the vendor agrees to comply with 
the network technology specification and meet a set of user responsibilities, including the conformance testing 
of developed and/or sold products. A list of authorized vendors can be found on the ODVA web site.

Second, ODVA administers a vendor-independent conformance testing process. The goal of the ODVA confor-
mance testing process is to help to ensure, to the greatest extent practicable, that products implementing ODVA 
technologies and standards comply with the ODVA specifications and interoperate in multi-vendor systems.

A cornerstone of this process is the successful completion of the ODVA conformance test at an ODVA autho-
rized test service provider (TSP). A full list of ODVA authorized TSPs can be found on the ODVA website. TSPs 
perform conformance tests that are designed, developed and managed by ODVA and conduct the tests in 
accordance with ODVA test requirements and procedures. ODVA TSPs must meet certain standards, including 
vendor-independence, neutrality and technical competency in networks and testing practices. The ODVA con-
formance test is typically a composite test comprised of three parts:

	 - �An automated software test that verifies the function of the network protocol. Depending on the complex-
ity of the device, several thousand messages are transmitted to the device under test (DUT). To ensure 
a test that is closely adapted to the characteristics of the DUT, the manufacturer must provide a formal 
description of all relevant CIP features of the DUT;

	 - �A hardware test that examines the characteristics of the physical layer for conformance. Physical lay-
er tests vary by network and may include product labeling, indicator operation, isolation, connectors, 
mis-wiring, voltage ranges, timing, etc.;

	 - �An interoperability test that exercises the product using prescribed test scenarios designed to demon-
strate the successful interoperability of the product in multi-vendor systems.

The automated conformance test software is a Windows®-based tool that uses a network interface card in 
the PC to access the device under test. It is recommended that device developers run this test in their own lab 
before taking devices to a test service provider. The hardware test (where appropriate) and the system interoper-
ability test involve more complex test setups that typically are not available to device developers but are docu-
mented in the test plans or other ODVA publications. The vendor of the product may, at its option, observe the 
test at the TSP.

Upon the product’s successful completion of the test, the TSP submits the test results to ODVA for review and 
final approval. Contingent on passing results from the conformance tests and other requirements of ODVA, 
ODVA issues a Declaration of Conformity for the product. Declarations of Conformity are posted on ODVA’s 
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website at www.odva.org.

Adjunct tests are also available from the ODVA headquarters’ test service provider. These adjunct tests require that 
the device submitted for additional testing passes the appropriate conformance test first. Adjunct tests include:

	 - �DeviceNet Semiconductor Industry (test is in addition to DeviceNet Node test);

Passing adjunct test results are listed on the Declaration of Conformity for the device or device family.

Products that have received an official Declaration of Conformity from ODVA earn the right to use ODVA's 
CONFORMANT certification marks as appropriate for the network connectivity of the product. (Refer to the 
ODVA Identity Guidelines on the ODVA web site for more information on logo usage.) End users should check 
the ODVA web site under “Product Compliance” for the list of ODVA issued Declarations of Conformity or look 
the following conformance mark on a product:
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10. Abbreviations
For the purposes of this chapter, the following abbreviations apply: 

Abbreviation Meaning

ASCII American Standard Code for Information Interchange

CIP The Common Industrial Protocol defined by Volume 1 of the CIP Networks Library

CID Connection Identifier

EPR Expected Packet Rate

ISO International Standards Organization

MAC ID Media Access Control Identifier (another name for Network Address)

OSI Open Systems Interconnection (see ISO 7498)

UCMM Unconnected Message Manager

CRC Cyclic Redundancy Check

LED Light Emitting Diode

MAC Media Access Control sublayer

NAP Network Access Port

NUT  Network Update Time

RG-6 Standard for coaxial cable

SMAX MAC ID of the maximum scheduled node

UMAX MAC ID of the maximum unscheduled node

FTP File Transfer Protocol. An internet application that uses TCP reliable packet transfer to move 
files between different nodes. 
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Abbreviation Meaning

RFC

Request For Comments (RFC) – This document series, which was launched in 1969, 
describes the Internet suite of protocols and related experiments. Not all (in fact, very few) 
RFCs describe the Internet Standards, but all Internet Standards are written up as RFCs. The 
RFC series is unusual in that the proposed protocols are forwarded by the Internet research 
and development community, acting on their own behalf, as opposed to the formally re-
viewed and standardized protocols that are promoted by organizations such as CCITT and 
ANSI. [Source: RFC 1392]

TCP
Transmission Control Protocol (TCP) – An Internet Standard transport layer protocol defined 
in STD 7, RFC 793. It is connection-oriented and stream-oriented, as opposed to UDP. See 
also: connection-oriented, stream-oriented, User Datagram Protocol. [Source: RFC1392]

UDP
User Datagram Protocol (UDP) – An Internet Standard transport layer protocol defined in 
STD 6, RFC 768. It is a connectionless protocol which adds a level of reliability and multi-
plexing to IP. See also: connectionless, Transmission Control Protocol. [Source: RFC1392]
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11. Terminology
For the purposes of this document, the following definitions apply:

Term Definition

allocate
In the DeviceNet context, this is the process of reserving resources of the pre-
defined master/slave connection set in a DeviceNet node. It is associated with 
services of a similar name, of the DeviceNet object class (Class ID 0x03).

application
Typically refers to the application layer of the ISO-OSI model. The application lay-
er is the part of the product that performs application-specific functions. Typically, 
application objects that provide the desired behavior are associated with the 
application.

attribute

A description of an externally visible characteristic or feature of an object. The 
attributes of an object contain information about variable portions of an object. 
Typically, they provide status information or govern the operation of an object. At-
tributes also may affect the behavior of an object. Attributes are divided into class 
attributes and instance attributes.

behavior Indication of how the object responds to particular events. Its description in-
cludes the relationship between attribute values and services.

bit A unit of information consisting of a 1 or a 0. This is the smallest data unit that 
can be transmitted.

broadcast
A message that is sent to all nodes on a network. It also refers to the property 
of a network where all nodes listen to all messages transmitted for purposes of 
determining bus access/priority.

byte A sequence of 8 bits that is treated as a single unit.

class
A set of objects, all of which represent a similar system component. A class is 
a generalization of the object, a template for defining variables and methods. All 
objects in a class are identical in form and behavior, but they may contain differ-
ent attribute values.

object-specific service
A service defined by a particular object class to perform a required function that 
is not performed by any common services. A class-specific service is unique to 
the object class that defines it.

client (1) An object that uses the services of another (server) object to perform a task.
(2) An initiator of a message to which a server reacts.
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Term Definition

connection A logical binding between two application objects. These application objects may 
be the same or different devices.

Connection Identifier
Identifier assigned to a transmission that is associated with a particular connec-
tion between producers and consumers that identifies a specific piece of applica-
tion information.

connection path Is made up of a byte stream that defines the application object to which a con-
nection instance applies.

consumer A node that is receiving (i.e., consumes) data from a producer.

consuming application The application that consumes data.

CRC error Error that occurs when the cyclic redundancy check (CRC) value does not match 
the value generated by the transmitter.

cyclic Term used to describe events that repeat in a regular and repetitive manner.

datagram A transmitted message.

device A physical hardware connection to the link. A device may contain more than one 
node.

Device Profile A collection of device-dependent information and functionality providing consis-
tency between similar devices of the same device type.

drop or dropline The cable that connects one or more nodes to a trunk cable, usually accom-
plished using a tap.

encapsulation
The technique used by layered protocols in which a layer adds header informa-
tion to the protocol data unit (PDU) from the layer above for purposes of carrying 
one protocol within another.

Ethernet

A standard for LANs, initially developed by Xerox, and later refined by Digital, Intel 
and Xerox (DIX). In its original form, all hosts are connected to a coaxial cable, 
where they contend for network access using a Carrier Sense Multiple Access 
with Collision Detection (CSMA/CD) paradigm. See also: IEEE 802.3, Local Area 
Network. [Source: RFC1392]

Expected Packet Rate A misnomer, the Expected Packet Rate (EPR) is basic interval at which a connec-
tion transmits its data.
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Term Definition

fixed tag
A two-byte field in a ControlNet Lpacket that identifies unconnected or station 
management services the node is expected to perform. The first byte is the 
specific service code and the second byte contains the MAC ID of the destination 
node.

frame See MAC Frame.

generic tag A three-byte field in a ControlNet Lpacket that serves as the Connection Identifier 
(CID). It is associated with a specific piece of application information.

Guardband It is the portion of ControlNet bandwidth that is allocated for the transmission of 
the moderator frame.

instance The actual physical presentation of an object within a class. Identifies one of 
potentially many objects within the same object class.

Keeper Object responsible for holding and distributing the Connection Originator sched-
ule data for all Connection Originator devices on a ControlNet Network.

Link or Data Link Refers to the Data Link layer of the ISO/OSI model.

Lpacket
On ControlNet, the Lpacket (or link packet) is a portion of the MAC Frame where 
application information that contains a size, control byte, tag, and link data is 
transmitted. There may be one or more Lpackets in a single MAC Frame.

MAC frame
A collection of MAC symbols transmitted on the network medium that contains 
the required message formatting/framing necessary to pass a message to an-
other node. For example, a ControlNet MAC Frame consists of a preamble, start 
delimiter, source MAC ID, Lpackets, CRC, and end delimiter.

Message Router The object within a node that distributes explicit message requests to the appro-
priate application objects.

multicast A packet that is sent to multiple nodes on the network.

network A series of nodes connected by some type of communication medium. The con-
nection paths between any pair of nodes can include repeaters and bridges.

Network Access Port
On ControlNet, this is an alternate physical layer connection point on a perma-
nent node that allows a temporary node to be connected to the link. The tempo-
rary node has its own network address, but simply shares the permanent node’s 
physical layer connection to the network.
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Term Definition

network address An integer identification value assigned to each node on a CIP Network.

network status indicators Indicators (i.e., LEDs) on a node indicating the status of the Physical and Data 
Link Layers.

Network Update Time
Repetitive time interval on a ControlNet Network that is used to subdivide the 
network bandwidth. It determines the fastest rate that real-time data can be 
transferred on the network.

node A connection to a link that requires a single MAC ID.

object

(1) An abstract representation of a particular component within a product. Ob-
jects can be composed of any or all of the following components: 
a) data (information which changes with time); b) configuration (parameters for 
behavior); c) methods (things that can be done using data and configuration). (2) 
A collection of related data (in the form of variables) and methods (procedures) for 
operating on that data that have clearly defined interface and behavior.

object-specific service
A service defined by a particular object class to perform a required function that 
is not performed by one of the common services. An object-specific service is 
unique to the object class that defines it.

originator The client responsible for establishing a connection path to the target.

point-to-point A one-to-one data exchange relationship between two, and only two nodes.

port
A CIP port is the abstraction for a physical network connection to a CIP device. 
A CIP device has one port for each network connection. Within the EtherNet/IP 
specific context, a TCP or UDP port is a transport layer de-multiplexing value. 
Each application has a unique port number associated with it. [Source: RFC1392]

producer A node that is responsible for transmitting data.

redundant media A system using more than one medium to help prevent communication failures.

repeater Two-port active Physical Layer device that reconstructs and retransmits all traffic 
on one segment to another segment.

scheduled On ControlNet these are data transfers that occur in a deterministic and repeat-
able manner, on preconfigured NUT-based intervals.
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Term Definition

segment

This term has two uses within CIP. With respect to cable topology, a segment is a 
length of cable connected via taps with terminators at each end; a segment has 
no active components and does not include repeaters. With respect to explicit 
messaging, segments (logical segments, port segments, etc.) are used in explicit 
messages to describe various addressing elements of devices such as: class IDs, 
attribute IDs, ports, connection points, etc.

serial number A unique 32-bit integer assigned by each manufacturer to every device. The 
number needs only be unique with respect to the manufacturer.

server A device or object that provides services to another device (the client).

service Operation or function that an object performs upon request from another object.

tap Point of attachment on the trunk where one or more droplines are attached.

target The end-node to which a connection is established.

terminator A resistor placed at the physical extreme ends of trunk segments to prevent 
transmission reflections from occurring.

transceiver The physical component within a node that provides transmission and reception 
of signals onto and off of the medium.

trunk or trunkline The main bus or central part of a cable system, typically terminated at each end 
by a termination resistor.

Unconnected Message 
Manager

The function within a node that transmits and receives unconnected explicit 
messages.

unscheduled On ControlNet, this refers to data transfers that use the unscheduled portion of 
the NUT.




