The Open DeviceNet Vendor Association (ODVA) Automotive Special Interest Group (SIG) is pleased to offer this document as a tool for troubleshooting devices that have been implemented into a DeviceNet network as well as the DeviceNet network itself.

The following individuals have been invaluable in putting this document together:

Training Committee Members:

- Matt Kuzel Huron Networks
- Borisa Begic InterlinkBT
- James O’Laughlin SICK, Incorporated
- Erick Rudaitis SMC Corporation of America
- Michael Giroux WAGO Corporation

Automotive SIG Members:

- Erick Rudaitis, Chairperson SMC Corporation of America
- Marie Sandor, Administration SMC Corporation of America
- Thomas Dwyer Bosch Rexroth
- Greg Irwin DaimlerChrysler
- Gil Jones EATON Corporation
- Frank Latino Festo
- Matt Kuzel Huron Networks
- Borisa Begic InterlinkBT LLC
- Gary Workman General Motors
- Enrico DeCarolis Numatics, Inc.
- Anton Suarez OMRON Corporation
- Dave VanGompel Rockwell Automation
- James O’Laughlin SICK, Incorporated
- Ed Ingraham Siemens
- Mike Johnson SOLA / Hevi Duty
- Michael Giroux WAGO Corporation
- Chuck Sammut Woodhead

For more information regarding the ODVA, including the Automotive SIG, please refer to the ODVA website at:

www.odva.org
Plant Floor Troubleshooting Guide

DeviceNet Plant Floor Troubleshooting Flowchart
(Suspected Network Error / Multi-Node Problem)
See Page 1

DeviceNet Plant Floor Troubleshooting Flowchart
(Intermittent Failures)
See Page 11

DeviceNet Plant Floor Troubleshooting Flowchart
(Single Node Problem)
See Page 15

Walking the Network
See Page 19

Segmenting the Network to Troubleshoot
See Page 20

DeviceNet Network Checklist
See Page 21
Start 1: DeviceNet Plant Floor Troubleshooting Flowchart
(Suspected Network Error / Multi-Node Problem)

Are the DeviceNet scanner LEDs red (Bus off)?

Yes

Turn Auxiliary and DeviceNet Power OFF, Wait 10 seconds, Turn back ON. Examine scanner LEDs

No

Are the DeviceNet scanner LEDs red (Bus off)?

Yes

Cycle System, Auxiliary and DeviceNet Power, Wait 10 seconds Examine scanner LEDs

No

Are the DeviceNet scanner LEDs red (Bus off)?

Yes

Review Walk the Network

No

Attach DeviceNet Diagnostic Tool

Go to B
See Page 2

Go to O
See Page 11

Note any diagnostic information on DeviceNet scanner if available.

See Page 19

See Page 11
Are there multiple DeviceNet network power supplies?

Yes

Disconnect supplemental power supplies.

Go to C

See Page 3

No

Are there multiple DeviceNet network power supplies?

Yes

Disconnect supplemental power supplies.

Go to C

See Page 3

No

Are the DeviceNet scanner LEDs red (Bus off)?

Yes

Check nodes and cabling inside cabinet.

Problem fixed?

Yes

Done

No

Go to E

See Page 4

The bus off indication should be gone and diagnostics for missing nodes should be displayed.

Is there only one node with red Module (MS) or Network Status (NS) LEDs?

Yes

No

Was problem found during the network walk?

Yes

Check nodes and cabling inside cabinet.

Go to F

See Page 5

No

Go to D

See Page 3
C

Is V- of the power supplies tied to V- of DeviceNet?

Yes

Is V+ of the power supplies wired separately?

Yes

Go to Start 1

See Page 5

No

Wire V- of all power supplies together. Reconnect trunk cable.

Start

Wire V+ of all power supplies separately. Reconnect trunk cable.

D

Are the nodes and cables okay?

Yes

Replace scanner.

Go to Start 1

See Page 1

No

Replace cable or node.

Reconnect network.

Go To Start 1

See Page 1
Disconnect node from network. Turn Auxiliary and DeviceNet Power OFF. Wait 10 seconds. Turn back ON.

Note: Other nodes can cause a node to go offline.

Are the DeviceNet scanner LEDs red (Bus off)?

Yes

Replace drop cable.

No

Are the DeviceNet scanner LEDs red (Bus off)?

Yes

Go to F

See Page 5

No

Replace node. Verify Baud Rate, Node Address and .EDS file information.

Done
F

Have any changes been made to network since last time worked consistently?

Yes

Investigate changes

No

Are DeviceNet voltages correct?

Yes

Go to Start 1

See Page 1

No

Change power supply

Check Voltages

See Items 12, 13 & 14 in DeviceNet Network Checklist

See Page 23

Note: Changes such as cabling, tools, firmware, nodes, etc.

Go to G

See Page 6

Go to K

See Page 8
Bus off condition fixed?

No

Complete DeviceNet Network Checklist

See Page 21

Errors found and fixed?

Yes

Done

No

Check Voltages

See Items 12, 13 & 14 in DeviceNet Network Checklist

Voltagess OK?

Yes

Go to I

See Page 7

No

Go To H

See Page 7

Note: This will now take some time. Check
1. Cables, 2. Node,
3. Segment, 4. Grounding
5. CAN transceiver shorted
6. Not 60Ω etc.
All cable connections OK?

Yes

Fix cable connection

No

Attach DeviceNet diagnostic tool and measure CAN errors

> 20 errors/second?

No

Go to Start 1

See Page 1

Yes

Go to K

See Page 8

Recheck for ground loops using DeviceNet Network Checklist

Problem found and fixed?

Yes

Done

No

Go to J

See Page 8
J

Replace power supply again in the case that current power supply is also bad.

Errors found and fixed?

No

K

Divide network into two sections. Connect section 1 and move terminating resistor.

Network up?

No

Yes

Disconnect Section 1. Connect Section 2 and move terminating resistor.

Isolate problem

Troubleshoot other 1/3 of the network

Yes

Network up?

No

Yes

Go to L

See Page 9

Done

Go to M

See Page 9
Replace scanner. Reconnect entire network.

Bus off condition fixed?

Yes

Done

No

Isolate problem
Check for issues in cabinet

Problem Solved

Yes

No

Rewalk network looking for stressed cables (e.g. bend radius too tight, tie wrapped where it causes failure)

Any shorts or opens?

Yes

Fix problem

No

Go to N
See Page 10

Checking for potential network load issues.

Check for wiring and other nodes within the scanner cabinet.

See Page 1
Disconnect all nodes, add one node at a time until network communication fails. Determine node that causes bus off and replace.

Still bus off?

- **Yes** → GET HELP
- **No** → Done
Start 2: DeviceNet Plant Floor Troubleshooting Flowchart
(Intermittent Failures)

Do you have a DeviceNet diagnostic tool?

Yes

Connect tool to diagnose bus. (Monitor voltages, CAN frame errors, etc.)

Problem diagnosed?

No

Yes

Fix problem indicated

Problem fixed?

No

Yes

Done

Go to

See Page 12

Yes

No

No

See Page 12
Check noisy device's grounding

Is the device's grounding correct?

Problem fixed?

Yes

Done

No

Fix grounding

No

Problem fixed?

Yes

Go to Q

See Page 13

Go to R

See Page 14

VFD load dumps, Servos enabled, Welding, Other Maintenance in the Area (External to Network), etc.

Grounding problem
Is there a noisy device on DeviceNet?

Yes

Replace DeviceNet interface card on that device

Problem fixed?

No

Call Manufacturer

Yes

Done

Go to

e.g. VFD, Welding, Robot, Motor etc.

See Page 14
Check DeviceNet grounds (missing grounds or ground loops).

Grounds OK?

Yes

Problem fixed?

No

Fix grounds.

Yes

Done

No

Go to F

See Page 5
Start 3: DeviceNet Plant Floor Troubleshooting Flowchart
(Node Problem)

If this is your third time through this process, consider the possibility that this is a network issue rather than a node issue.

Turn Auxiliary and DeviceNet Power OFF, Wait 10 seconds, Turn back ON. Verify scanner is functioning.

Is the Device’s Network Status LED flashing or solid green?

- **Yes**: Is the Device’s Network Status LED solid green?
 - **Yes**: Voltages OK?
 - **No**: Unplug device and check DeviceNet power and Auxiliary power at the node
 - **Yes**: Is the device’s Network Status LED on solid red?
 - **Yes**: Go to S
 - See Page 16
 - **No**: Go to V
 - See Page 17
 - **No**: Find and fix voltage problem

- **No**: Voltages OK?
 - **Yes**: Is the Device’s Network Status LED solid green?
 - **No**: Go to Start 3
 - See Above
 - **Yes**: Go to V
 - See Page 17

Done
Verify node address and data rate. If no changes required, replace node. Be sure that node address, data rate and .EDS revision are correct.

Is the device’s Net Status LED on solid red?

Yes

Unplug node
Connect DeviceNet diagnostic tool

Can you see other nodes on the network?

Yes

Disconnect DeviceNet diagnostic tool
reconnect node. Disconnect adjacent nodes. Turn Auxiliary and DeviceNet Power OFF, Wait 10 seconds, Turn back ON.

No

Go to Start 3
See Page 15

Possible cable, tee or other node that is causing the problem

No

Go to Start 3
See Page 15

Go to T
See Page 17

Go to U
See Page 17

Is the device’s Network Status LED on solid green?

Yes

No

See Page 17

See Page 17
One of the adjacent nodes may be causing the problem. Replace bad node. Reconnect nodes one at a time to confirm which node is causing the problem.

Go to Start 3
See Page 15

If the node’s Net Status LED is flashing green, it is ready to establish communication.

Check HMI or scanner for diagnostic information for corrective action.

Was corrective action successful?

Yes
Done

No

Walk the network and check connections.

Go to W
See Page 18

Disconnect nodes until the device’s Net Status LED is on solid green.

Reset power after removal of each node to determine if problem has been corrected.

Reconnect nodes one at a time to confirm which node is causing the problem.

Replace offending node.

Go to Start 3
See Page 15
Problem found and fixed?

Yes

No

Replace node

Node online?

Yes

No

Replace drop cable or tee

Node online?

Yes

No

Go to U

See Page 17

Done
“Walking” the Network

Here are the things to keep in mind and look for when walking a network.

First try to look at a drawing or layout of the network so you know where the cables go and if the lengths are correct. Sometimes this is not possible but look around in the controller cabinet for this information. Also remember that Auxiliary Power topology and implementation is just as important as DeviceNet topology and implementation. Check both when walking the network (i.e. for additional information, see Auxiliary Power – Section 14 in the DeviceNet Network Checklist).

- Loose connections are the number one cause of failures.
 - Make sure all connections are undamaged.
 - Connections may look good but not be tight. Check them.

- Cable stress is the second thing to look for.
 - Cable radii might be too tight or stressed with tie wraps. There is a lot of vibration in a plant and if the cables are stressed it will create a failure point.
 - Some cable trays are mounted on long fence post and the cables brought down from them. At the point where they leave the cable tray and bend down could be a potential spot for failure.

- Grounds are very important!
 - Visually inspect grounding to assure that grounding location is clean and connection is tight. Make sure that all components are properly grounded.

- Separate high voltage cables from DeviceNet cables!
 - Power, welding or servo cables are sometimes put on top of the DeviceNet cables or put in the same cable trays. DeviceNet cables must have the proper distance between these cables.
 - To clean up the wiring power, servo, or welding cables are tie wrapped together. DeviceNet cables must have the proper distance between these cables.
Segmenting a network to troubleshoot a problem.

Finding a network cable problem is sometimes not the easiest thing to detect. The following step-by-step process will assist in locating cabling issues:

- Divide the network into two halves to determine which half is causing the trouble by physically disconnecting the trunk cable and placing the terminating resistor at the break point

- Once you determine the half causing the trouble you can approach the problem two ways.
 - Continue to divide the defective portion of the network in half to further isolate the trouble; or
 - Re-walk the network making sure that all connections are still “OK”. If everything looks “OK” then start at the controller and go to the first drop. Break the trunk cable and insert a terminator. Walk the terminator down the trunk until the network fails.

Once the problem location has been determined, consider the following cable connection / details as possible causes of the problem:

- Tee Connection
- Drop Connection
- Node Connection
- Loading problem with a node or insufficient bus power. (A volt-amp-meter should be used to determine if the problem is related to bus loading).

If the network has been running and then fails, it is often due to a bad cable or “Tee” connection.

Remember: There could be one or more causes for a specific problem. Take your time and check thoroughly to minimize the possibility of missing something.
DeviceNet Network Checklist

The following items should be completed during the implementation of DeviceNet networks commissioning. This will act as a record of the values attained after installation of a working network and can be used for comparison for any future network / device troubleshooting.

<table>
<thead>
<tr>
<th>ID</th>
<th>Item Description</th>
<th>Checked</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Are all DeviceNet devices approved for use on the project? Make sure that DeviceNet taps are of the proper type.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Are 24VDC Power Supply calculations supplied? If the network uses more than one supply, is the network connected as designed?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Are all the trunk and drop cables separated from high voltage and potential noise sources in accordance with the ODVA DeviceNet Planning and Installation Guide?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Are all DeviceNet Drop & Trunk line cables routed without strain on the connection points due to bending or tension? Are all connections tight?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5a</td>
<td>Are the drop cables less than or equal to 20 feet (6 meters)?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5b</td>
<td>Is the sum of all drop lines less than the maximum allowed for the network data rate DeviceNet specification?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6a</td>
<td>Is the trunk line less than the maximum length allowed for the network data rate in the DeviceNet specification?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>Are both terminating resistors in place at the ends of the trunk line?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Are all selectable DIP switch / rotary switch settings (node address & baud rate) correct?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Is the DeviceNet 24VDC power supply (V-) bonded directly to the ground buss bar (#12 wire) at one location only?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Are there any frayed or exposed wires on open style connectors creating a possible shorted condition?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>If the DeviceNet network uses more than one power supply, are the V- connections of all power supplies tied together and V- only bonded to the ground buss at one location?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note regarding all Electrical Tests that follow:
Always keep the same reference point when making measurements. This allows you to trace wiring problems and find grounding problems. If you put the black lead on the Earth ground point, make sure you always use the same point and the same lead. When performing any resistance check, you cannot have less than “0” Ohms. A negative resistance value indicates you may have voltage on the ground, or on the wire you are checking. Remove the source of any voltage to get an accurate measurement.
Network Termination Test

1. Follow shutdown procedures (if any)
2. Stop all network communication.
3. Turn all network and auxiliary power supplies off.
4. Measure and record the DC resistance between CANH and CANL at the middle and ends of the network.

 - If the measured value is <50 ohms
 - Check for short circuit between CANH and CANL wiring
 - Check for more than two terminating resistors
 - Check nodes for faulty transceivers

 - If the measured value is 50-70 ohms
 - Normal (Do nothing)

 - If the measured value is 71-125 ohms
 - Check for open circuits in CANH or CANL wiring
 - Check for one missing terminating resistor

 - If the measured value is > 125 ohms
 - Add terminating resistor
 - Check for open circuits in CANH and CANL wiring

<table>
<thead>
<tr>
<th>ID</th>
<th>Item Description</th>
<th>Checked</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Network Termination Test</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design Source __________________________ Controls Engineer __________________________
Design Engineer __________________________ Date __________________________
DeviceNet Plant Floor Troubleshooting Guide – DeviceNet Check List PUB00147R0 Page 22
<table>
<thead>
<tr>
<th>ID</th>
<th>Item Description</th>
<th>Checked</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Network Power Supply Ground Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Turn all network power supplies off. Disconnect the V- and Shield wires from ground and from each other.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Using a Digital Voltmeter, measure DC voltage from shield to ground at all power supplies. Is there less than 1VDC?(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Remove all sources of voltage before continuing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Measure and record the DC resistance between V- and earth ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measured value should show infinite resistance. If other value is measured, look for swapped V- and shield wires at termination points.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Measure and record the DC resistance between Shield and earth ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measured values greater than 20kΩ are considered Normal. For measured values that are greater than 1 kΩ and less than 20 kΩ:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Disconnect both DeviceNet connectors on the top of the main control panel and repeat the above procedure. If the problem remains, check connections in the main control panel. Look for swapped V- and shield wires at termination points.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- If the problem went away, segment the network and isolate the location of the problem, and check for grounded V- or Shield wires. Sometimes the V- and Shield connections are transposed, which would cause ground loops.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Reconnect the V- and Shield wires to ground.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Go to each end of the network and remove terminator. Check resistance between V- and Shield to verify that there is not a broken shield wire. DC Resistance should be < 20Ω.(^1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For measured values greater than 20Ω, check for broken shield</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Does not apply to applications in which flat cable is utilized for DeviceNet Communication.
<table>
<thead>
<tr>
<th>ID</th>
<th>Item Description</th>
<th>Checked</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Network Power Supply Common Mode Voltage Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Turn all network power supplies on.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Configure all nodes for their maximum current draw from network power. Turn on outputs that use network power.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Measure and record the DC voltage between V+ and V- where each power supply connects to the trunk.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Measure and record the DC voltage between V+ and V- at the ends of the network.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measured values between 11.0 VDC and 25.0 VDC are consistent with the DeviceNet Specification for proper DeviceNet communication.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>However, input devices that may rely V+ and V- for power may not operate properly at voltages less than 20 VDC. Check input device (e.g. proximity sensors, photoelectric sensors, etc.) to verify device is within voltage specifications.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Measure between V- and Shield. Measured values less than 4.6 VDC are considered normal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If measured value from:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Item 4. Is < 11.0 VDC; or</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Item 5. Is > 4.6 VDC,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The network may not operate properly.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible solutions are:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Shorten the overall length of the network cable.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Move the power supply in the direction of the overloaded section.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Move nodes from the overload section to less loaded section.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Move high current loads close to the power supply.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Break the network into two separate networks.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Add power supply.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Item Description</td>
<td>Checked</td>
<td>Date</td>
<td>Comments</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------------</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>14</td>
<td>Auxiliary Power Measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Monitor the voltage present at both ends of the auxiliary power trunk cable under normal operating conditions and record the high and low values observed. The use of an oscilloscope may be necessary.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Check all manufacturers’ specifications to verify that the auxiliary power observed falls within the manufacturers’ specifications. If problems are observed, consider the following:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Add an additional power supply</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Shorten auxiliary power trunk line cabling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Check for influence of noise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Assure that the grounding requirements outlined in the manufacturers’ specifications have been met.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

___/___/___