Practical applications of Lightweight Block Ciphers to Secure EtherNet/IP Networks

Jordon Woods
Innovasic

October 14, 2015
Authors

Jordon Woods
Chief Technical Officer
Innovasic, Inc.

Patricia Muoio
Director of Research and Development
G2, Inc.
A New Era?

- 50B Internet connected devices by 2025 (IoT)
- Of that 50B, ~40% will be Industrial devices (Industry 4.0, IIoT)
 - (Source: IHS 2013, Internet Connected Devices)

- These devices are sensors, actuators, field devices…

- …used in Building Automation, Factory Automation, Process Automation, Water/Wastewater, Transportation, Smart Grid, etc.
Constraints of the IIOT

- **Realities**
 - Widely dispersed
 - Interconnected
 - Homogeneous networks
 - Not very secure
 - Enormous attack surface
 - Consistency across platforms
 - Hardware, SW, languages, devices, etc.

- **Constraints**
 - Limited processing resources
 - Limited memory
 - Cost-constrained
 - Area/footprint constrained
The Promise of Lightweight Cryptography

• The small size and limited processing power of many connected devices could inhibit encryption and other robust security measures.
 – Edith Ramirez, chair, US Federal Trade Commission

• Cryptographic solutions must be easy to implement and have high performance on a wide range of severely constrained devices. Cryptography should be an aid, not a hindrance, to achieving security.
Why Not AES?

- Existing cryptographic algorithms were, for the most part, designed to meet the needs of the desktop computing era
 - AES was designed specifically for environments that support a standard PC architecture
 - Power, memory and size essentially unconstrained
 - Substantial Latency/overhead
 - Over the last 15 years, a lot of effort has gone into reshaping the AES into a solution which will work in physically constrained systems
 - Still falls short for highly-constrained devices
The Promise of Lightweight Cryptography

- Lightweight cryptography lends itself to implementation as a block cipher
 - Small hardware footprint compared to comparable AES implementations
 - Scalable, pipelined architecture
 - In-line encryption/decryption
 - Comparatively low latency
 - Can be realized by small circuits with minimal power requirements
 - Provides comparable security to AES for a given key size
Most Lightweight cryptography are designed for specific platforms (PRESENT, KATAN, Piccolo, etc.)

Poor performance on other platforms can ruin overall performance

SIMON & SPECK

- Two families of highly flexible block ciphers.
- High performance on ASICs, FPGAs, Microcontrollers and Microprocessors.
- Flexible and secure
- **SIMON** and **SPECK** are generalists
• Versatile in hardware and software
• For pure hardware apps SIMON outperforms SPECK
• Small, fast, low energy and power. Record breaking performance on ASICs and FPGAs
• Excels on microcontrollers and microprocessors too
• Versatile in software and hardware
• For pure software apps SPECK outperforms SIMON
• Small, fast, low energy and power. Record breaking performance on microcontrollers and microprocessors
• Excels on ASICs and FPGAs as well
SIMON & SPECK achieve robust encryption using repeated rounds of simple functions

For SIMON, each round consists of a two-stage Feistel map. The Feistel map for the SIMON algorithm is given by:

\[R_k(x,y) = (y \oplus f(x) \oplus k, x) \]

Where \(k \) is the round key and

\[f(x) = (Sx \& S^8x) \oplus S^2x. \]

The inverse of the round function is used for decryption:

\[R_k^{-1}(x,y) = (y, x \oplus f(y) \oplus k) \]
The SPECK algorithm also utilizes a Feistel-based map:

\[R_k(x, y) = ((S^{-\alpha}x + y) \oplus k, S^\beta y \oplus (S^{-\alpha}x + y) \oplus k), \]

with rotation amounts \(\alpha = 7 \) and \(\beta = 2 \), if \(n = 16 \) (block size = 32) and \(\alpha = 8 \) and \(\beta = 3 \) otherwise.

The inverse of the round function uses modular subtraction for decryption:

\[R_k(x, y) = (S^\alpha((x \oplus k) - S^{-\beta}(x \oplus y)), S^{-\beta}(x \oplus y)). \]
Each algorithm makes use of “rounds” or iterations operating on a given block sized and key size.
Likewise, each algorithm generates “sub-keys” for each round. Sub-keys depend only upon the block/key size and thus, may be pre-calculated.

$$l_{i+m-1} = (k_i + S^{-a}l_i) \oplus i \text{ and } k_{i+1} = S^\beta k_i \oplus l_{i+m-1}.$$
A simple SIMON 32/64 implementation
 - 3 Pipeline stages to buffer 8-bit data to a 32-bit block
 - Pad bytes are needed for messages not comprised of an even number of block
 - Eight additional pipeline stages
 - Four SIMON rounds per pipeline stage
 - A total of 11 pipeline stages for a total of 88 nS latency at 125 MHz
• BUT:
 – Sub-keys can be pre-calculated and stored to reduce hardware footprint
 – Intermediate round results can aren’t needed, so the cypher block can be re-used on subsequent rounds
 – Need to add only a small amount of control logic
• Further optimizations are readily feasible.
 – All 44 rounds of SIMON 64/128 can be performed in a single pipeline stage
 – Can be clocked at 300 MHz for a 130nm process node
 – 8 pipeline stages (7 data buffering, 1 for SIMON) total less than 27 nS of total latency at 300 MHz
For most platforms and constraints SIMON, SPECK or both outperform existing block ciphers
- ASIC/FPGA area
- ASIC/FPGA efficiency (throughput/area)
- Latency
- Ease of side-channel protection
- Power and energy efficiency
- Software performance (size, speed, energy) on 8-, 16-, 32- and 64-bit processors
• For a given block and key size, SIMON & SPECK provide comparable or superior security to AES

<table>
<thead>
<tr>
<th>Size</th>
<th>Algorithm</th>
<th>Area (GE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>128/128</td>
<td>SIMON</td>
<td>1234</td>
</tr>
<tr>
<td></td>
<td>SPECK</td>
<td>1280</td>
</tr>
<tr>
<td></td>
<td>AES</td>
<td>2400</td>
</tr>
</tbody>
</table>
• CIP Security uses proven, open security technologies:
 – X.509v3 Digital Certificates used to provide cryptographically secure identities to users and devices
 – TLS (Transport Layer Security) and DTLS (Datagram Transport Layer Security) cryptographic protocols used to provide secure transport of EtherNet/IP traffic
 – Hashes or HMAC (keyed-Hash Message Authentication Code) as a cryptographic method of providing data integrity and message authentication to EtherNet/IP traffic
 – Encryption as a means of encoding messages or information in such a way as to prevent reading or viewing of EtherNet/IP data by unauthorized parties
Application to CIP Security

- Obvious applications of SIMON & SPECK to CIP Security is message encryption

- However, CIP Security is also strongly focused on authentication
 - Digital Certificates for identity establishment
 - HMAC for message authentication

- Hash algorithms and RSA based certificate exchange also require significant resources

- An alternative for highly-constrained devices may be attractive
Alternative for Authentication

• Cipher-based message authentication code (CMAC) provides an alternative means of message authentication based on a symmetric key block cipher
 – NIST special publication 800-38B
 – Proven implementations with AES (IPSEC)
 – Suitable for SIMON & SPECK
 – May be more appropriate for highly-constrained devices
 – In extremely constrained environments, the symmetric keys can be pre-shared
The CMAC algorithm:

- Takes a message \((M)\), of bit length \(Mlen\)
- Chains the block cipher by acting on a single block \((M_i)\) and using a bitwise exclusive-or to sum the output of each stage in the chain
- Produces a MAC, a.k.a. message authentication code, \((T)\), of bit length \(Tlen\)
- \(T\) is appended to the outgoing message
- On ingress, the process is repeated and the resulting MAC is compared to the MAC appended to the message
 - The CMAC algorithm also makes use of sub-keys
 - Distinct from the sub-keys generated for each SIMON/SPECK round
• ODVA makes consistent use of proven technologies
• Clearly, to be of use, SIMON & SPECK must be standardized and pass a high-level of scrutiny with the security community
 – SIMON and SPECK have been submitted for inclusion in ISO 29192-2, the standard for lightweight block ciphers. This proposal is currently in review
 – Significant analysis of this technology has already been performed and shows great promise for robust security in constrained applications
 – Open technology. The algorithm and associated research are public domain

Most scientists regarded the new streamlined peer-review process as ‘quite an improvement.’
A Practical Example

- Goals:
 - Based upon an existing Ethernet/IP DLR demonstration
 - Integrated SIMON IP with Switch IP.
 - No changes to stack or application SW.
 - Completely transparent to Demo operation.
Demonstration Parameters

- **SIMON 32/64**
 - 32 rounds; Key 64 bits
 - Message encryption only
 - Layer 3 and above
 - Latency
 - 11 stages @ 125 mhz; 88 ns
- **Input data**
 - 8 bit, 1-3 pad bytes added
- **Key change process**
 - Key expansion pre-computed to minimize latency
 - Requires pipeline flush and stall

Table

<table>
<thead>
<tr>
<th>block size $2n$</th>
<th>key size mn</th>
<th>word size n</th>
<th>key words m</th>
<th>const seq</th>
<th>rounds T</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>64</td>
<td>16</td>
<td>4</td>
<td>z_0</td>
<td>32</td>
</tr>
<tr>
<td>48</td>
<td>72</td>
<td>24</td>
<td>3</td>
<td>z_0</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td></td>
<td>4</td>
<td>z_1</td>
<td>36</td>
</tr>
<tr>
<td>64</td>
<td>96</td>
<td>32</td>
<td>3</td>
<td>z_2</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td></td>
<td>4</td>
<td>z_3</td>
<td>44</td>
</tr>
<tr>
<td>96</td>
<td>96</td>
<td>48</td>
<td>2</td>
<td>z_2</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>144</td>
<td></td>
<td>3</td>
<td>z_3</td>
<td>54</td>
</tr>
<tr>
<td>128</td>
<td>128</td>
<td>64</td>
<td>2</td>
<td>z_2</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>192</td>
<td></td>
<td>3</td>
<td>z_3</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>256</td>
<td></td>
<td>4</td>
<td>z_4</td>
<td>72</td>
</tr>
</tbody>
</table>
Demonstration Operation

• Linear Sensor provides position information.
 – Control module routes data to PLC
• PLC provides simple ladder logic to route linear sensor data to the display Rapid Platform
 – Control module renders position on the display
• The encrypted link is shown in red between the REM-based modules labeled a and b with the security algorithm enabled.
• A network tap installed on the encrypted link and on the unencrypted link.
• A network analyzer demonstrates secure link is operational and transparent to operation.
A Practical Example

- Goals:
 - Based upon an existing Ethernet/IP DLR demonstration
 - Integrated SIMON IP with Switch IP.
 - No changes to stack or application SW.
 - Completely transparent to Demo operation.
 - 200 μS DLR beacon traffic unaffected by encryption
 - SIMON effectively looks like a slow wire (88 nS on ingress and egress)
Conclusions

• Ethernet has enjoyed unprecedented success as a communication medium
 – The promised explosions of IoT, iIoT and Industry 4.0 threaten to dwarf this success

• Don’t believe in the IOT explosion? Consider this:
 – How many MAC Addresses did you use in 1998? Typically less than 5:
 • Work computer, home computer, a laptop.
 – Move to 2014. Now how many MAC Addresses do you use? Typically 10 to 15:
 • Cell phone, IP phone, laptop (2 – 1 for wired, 1 for wireless), laser printer (2 – same reason), set top box (2), TV, BluRay player, tablet, computer at home (2), wireless AP, . . .
Conclusions

• Ethernet’s continued success will give rise to a host of new applications with extremely limited resources

• SIMON & SPECK potentially address such applications and should be considered as CIP security technologies evolve.

• Lightweight block ciphers offer:
 – A small hardware footprint (SIMON)
 – Small software footprint (SPECK)
 – Scalability
 – In-line encryption/decryption;
 – Low latency; Low jitter
 – Comparable security to AES
THANK YOU