EtherNet/IP for Automotive Assembly

Laurentiu Silaghi, PMP
Controls Engineer, Comau

General Session and 15th Annual Meeting of Members

www.odva.org
About COMAU

COMAU is one of the leading suppliers of assembly lines for the automotive industry

COMAU offers machining and assembly modules, body welding systems, sub-assembly lines, integrated robotics, and comprehensive services
A network of 23 operative centers in 13 countries
Featured Application

- Framing line for an industrial truck
- 150 feet long, 50 feet wide, 18 feet high
- Consists of 8 stations
- 8 minute cycle time
Evaluated Numerous Networks

- DeviceNet
- ControlNet
- EtherNet/IP
- EtherNet Powerlink
- Profibus
- Profinet
COMAU Migrates to EtherNet/IP

EtherNet/IP is used for 80% of data communication because it:

• Cuts debugging time in half
• Eases installation by 30 percent
• Improves support with efficient traffic evaluation and a reduced learning curve
• Supports use of standard, off-the-shelf products and tools (ex. Wireshark)
• Is very flexible, as COMAU moves into new territory with adaptive solutions
EtherNet/IP Architecture

EtherNet/IP:

- Enables all network devices to “speak the same language”
- Extends Ethernet TCP/IP to the plant floor while reassuring the industrial robustness
- Provides a pure, standards-based Ethernet solution for interoperability
- Enables connectivity anywhere, anytime
Network Architecture Overview

• In addition to EtherNet/IP, COMAU uses DeviceNet
• These networks share the Common Industrial Protocol (CIP)
• As we all know, CIP encompasses a suite of services, including control, safety, motion, synchronization, configuration and information
Motors and drives use EtherNet/IP, simplifying equipment design, configuration and commissioning.
Bill of Materials

- A-B GuardLogix controllers 1756-L61s /LSP
- Rockwell RSLogix 5000 programming software
- A-B EtherNet/IP communication cards 1756-EN2T
- A-B Panelview Plus Terminals
- Cisco IE 3000 managed switch
- Hirschmann EtherNet/IP managed switches
- Numatics G3 EtherNet/IP manifolds
- A-B 1734 Point I/O
- SICK safety light screens and laser scanners
- Emerson VFD Drives
Design Considerations

• What functionality does the product require today and in future applications?
 ➢ Master(scanners), Slave (node adaptor) – Ex. Robot comm.
 ➢ Peer-to-peer messaging

• What are the physical requirements?
 ➢ IP20, IP65 or IP67

• What hardware should be chosen for this product?
• What firmware version should be used for this application?
• What are the configuration requirements?
• What design and verification tools should be used?
Lesson Learned

Robot Communication

Most of the robots require several tool changes: e.g. material handling, SPR guns, sealer, drill, vacuum

- **Issue**: EtherNet/IP communication time was 12s~30s, which would impact cycle time
- **Solution**: Implemented DeviceNet Quick Connect; proved application with less than 1s connection time (will migrate to EtherNet/IP now that Quick Connect is available)
Lesson Learned

Remote Control

Our customer made a late request for remote control in a router configuration (with multiple VLANs).

• **Issue**: I/O or Producer/Consumer tag traffic will not pass through a router
 - By design, the time-to-live parameter was configured in the firmware for a value of 1
 - This value will be reduced by a router and then discarded

• **Solution**: Overlapping the VLANs and opening the subnet mask on devices to allow multicasting
CIP uses the Producer/Consumer model, as opposed to the source/destination message addressing scheme.

Nodes on the Producer/Consumer network determine if they should consume the data in a message.
Lesson Learned

Hardware Convergence

To use DCS (Dual Check Safety) and a single Ethernet network cable for safety and process, we needed to establish independent instances of Ethernet (for dual-check safety relative to process communication)

- **Issue**: A logical and visible distinction must be made between process and safety-related communications

- **Solution**: We routed safety communication to a separate EN2T card
Benefits of EtherNet/IP

• Higher speeds, more data transfer within a shorter amount of time
• Cost effective solution supported by hundreds of vendors
• IT friendly, compatible with standard Internet protocols
• Remote diagnostics and maintenance from the office network
• Proven, complete solution for manufacturing automation
Specific Results

- Installation, Commissioning and Debugging for 10 stations, 12-15 robots takes couple days rather than 1-1/2 week.
On the Horizon

• Unicast communication for improved performance
 - Available with RSLogix v20

• EtherNet/IP Quick Connect
 - Available, currently in testing at Comau